pub trait KalmanFilterTrait: KalmanFilterTraitConst {
Show 19 methods // Required method fn as_raw_mut_KalmanFilter(&mut self) -> *mut c_void; // Provided methods fn set_state_pre(&mut self, val: Mat) { ... } fn set_state_post(&mut self, val: Mat) { ... } fn set_transition_matrix(&mut self, val: Mat) { ... } fn set_control_matrix(&mut self, val: Mat) { ... } fn set_measurement_matrix(&mut self, val: Mat) { ... } fn set_process_noise_cov(&mut self, val: Mat) { ... } fn set_measurement_noise_cov(&mut self, val: Mat) { ... } fn set_error_cov_pre(&mut self, val: Mat) { ... } fn set_gain(&mut self, val: Mat) { ... } fn set_error_cov_post(&mut self, val: Mat) { ... } fn set_temp1(&mut self, val: Mat) { ... } fn set_temp2(&mut self, val: Mat) { ... } fn set_temp3(&mut self, val: Mat) { ... } fn set_temp4(&mut self, val: Mat) { ... } fn set_temp5(&mut self, val: Mat) { ... } fn init( &mut self, dynam_params: i32, measure_params: i32, control_params: i32, typ: i32 ) -> Result<()> { ... } fn predict(&mut self, control: &Mat) -> Result<Mat> { ... } fn correct(&mut self, measurement: &Mat) -> Result<Mat> { ... }
}
Expand description

Mutable methods for crate::video::KalmanFilter

Required Methods§

Provided Methods§

source

fn set_state_pre(&mut self, val: Mat)

predicted state (x’(k)): x(k)=Ax(k-1)+Bu(k)

source

fn set_state_post(&mut self, val: Mat)

corrected state (x(k)): x(k)=x’(k)+K(k)(z(k)-Hx’(k))

source

fn set_transition_matrix(&mut self, val: Mat)

state transition matrix (A)

source

fn set_control_matrix(&mut self, val: Mat)

control matrix (B) (not used if there is no control)

source

fn set_measurement_matrix(&mut self, val: Mat)

measurement matrix (H)

source

fn set_process_noise_cov(&mut self, val: Mat)

process noise covariance matrix (Q)

source

fn set_measurement_noise_cov(&mut self, val: Mat)

measurement noise covariance matrix (R)

source

fn set_error_cov_pre(&mut self, val: Mat)

priori error estimate covariance matrix (P’(k)): P’(k)=A*P(k-1)*At + Q)

source

fn set_gain(&mut self, val: Mat)

Kalman gain matrix (K(k)): K(k)=P’(k)Htinv(H*P’(k)*Ht+R)

source

fn set_error_cov_post(&mut self, val: Mat)

posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P’(k)

source

fn set_temp1(&mut self, val: Mat)

source

fn set_temp2(&mut self, val: Mat)

source

fn set_temp3(&mut self, val: Mat)

source

fn set_temp4(&mut self, val: Mat)

source

fn set_temp5(&mut self, val: Mat)

source

fn init( &mut self, dynam_params: i32, measure_params: i32, control_params: i32, typ: i32 ) -> Result<()>

Re-initializes Kalman filter. The previous content is destroyed.

Parameters
  • dynamParams: Dimensionality of the state.
  • measureParams: Dimensionality of the measurement.
  • controlParams: Dimensionality of the control vector.
  • type: Type of the created matrices that should be CV_32F or CV_64F.
C++ default parameters
  • control_params: 0
  • typ: CV_32F
source

fn predict(&mut self, control: &Mat) -> Result<Mat>

Computes a predicted state.

Parameters
  • control: The optional input control
C++ default parameters
  • control: Mat()
source

fn correct(&mut self, measurement: &Mat) -> Result<Mat>

Updates the predicted state from the measurement.

Parameters
  • measurement: The measured system parameters

Implementors§