Trait opencv::hub_prelude::KalmanFilterTrait
source · pub trait KalmanFilterTrait: KalmanFilterTraitConst {
Show 19 methods
// Required method
fn as_raw_mut_KalmanFilter(&mut self) -> *mut c_void;
// Provided methods
fn set_state_pre(&mut self, val: Mat) { ... }
fn set_state_post(&mut self, val: Mat) { ... }
fn set_transition_matrix(&mut self, val: Mat) { ... }
fn set_control_matrix(&mut self, val: Mat) { ... }
fn set_measurement_matrix(&mut self, val: Mat) { ... }
fn set_process_noise_cov(&mut self, val: Mat) { ... }
fn set_measurement_noise_cov(&mut self, val: Mat) { ... }
fn set_error_cov_pre(&mut self, val: Mat) { ... }
fn set_gain(&mut self, val: Mat) { ... }
fn set_error_cov_post(&mut self, val: Mat) { ... }
fn set_temp1(&mut self, val: Mat) { ... }
fn set_temp2(&mut self, val: Mat) { ... }
fn set_temp3(&mut self, val: Mat) { ... }
fn set_temp4(&mut self, val: Mat) { ... }
fn set_temp5(&mut self, val: Mat) { ... }
fn init(
&mut self,
dynam_params: i32,
measure_params: i32,
control_params: i32,
typ: i32
) -> Result<()> { ... }
fn predict(&mut self, control: &Mat) -> Result<Mat> { ... }
fn correct(&mut self, measurement: &Mat) -> Result<Mat> { ... }
}
Expand description
Mutable methods for crate::video::KalmanFilter
Required Methods§
fn as_raw_mut_KalmanFilter(&mut self) -> *mut c_void
Provided Methods§
sourcefn set_state_pre(&mut self, val: Mat)
fn set_state_pre(&mut self, val: Mat)
predicted state (x’(k)): x(k)=Ax(k-1)+Bu(k)
sourcefn set_state_post(&mut self, val: Mat)
fn set_state_post(&mut self, val: Mat)
corrected state (x(k)): x(k)=x’(k)+K(k)(z(k)-Hx’(k))
sourcefn set_transition_matrix(&mut self, val: Mat)
fn set_transition_matrix(&mut self, val: Mat)
state transition matrix (A)
sourcefn set_control_matrix(&mut self, val: Mat)
fn set_control_matrix(&mut self, val: Mat)
control matrix (B) (not used if there is no control)
sourcefn set_measurement_matrix(&mut self, val: Mat)
fn set_measurement_matrix(&mut self, val: Mat)
measurement matrix (H)
sourcefn set_process_noise_cov(&mut self, val: Mat)
fn set_process_noise_cov(&mut self, val: Mat)
process noise covariance matrix (Q)
sourcefn set_measurement_noise_cov(&mut self, val: Mat)
fn set_measurement_noise_cov(&mut self, val: Mat)
measurement noise covariance matrix (R)
sourcefn set_error_cov_pre(&mut self, val: Mat)
fn set_error_cov_pre(&mut self, val: Mat)
priori error estimate covariance matrix (P’(k)): P’(k)=A*P(k-1)*At + Q)
sourcefn set_error_cov_post(&mut self, val: Mat)
fn set_error_cov_post(&mut self, val: Mat)
posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P’(k)
fn set_temp1(&mut self, val: Mat)
fn set_temp2(&mut self, val: Mat)
fn set_temp3(&mut self, val: Mat)
fn set_temp4(&mut self, val: Mat)
fn set_temp5(&mut self, val: Mat)
sourcefn init(
&mut self,
dynam_params: i32,
measure_params: i32,
control_params: i32,
typ: i32
) -> Result<()>
fn init( &mut self, dynam_params: i32, measure_params: i32, control_params: i32, typ: i32 ) -> Result<()>
Re-initializes Kalman filter. The previous content is destroyed.
Parameters
- dynamParams: Dimensionality of the state.
- measureParams: Dimensionality of the measurement.
- controlParams: Dimensionality of the control vector.
- type: Type of the created matrices that should be CV_32F or CV_64F.
C++ default parameters
- control_params: 0
- typ: CV_32F
sourcefn predict(&mut self, control: &Mat) -> Result<Mat>
fn predict(&mut self, control: &Mat) -> Result<Mat>
Computes a predicted state.
Parameters
- control: The optional input control
C++ default parameters
- control: Mat()