pub trait BackgroundSubtractorKNN: BackgroundSubtractor + BackgroundSubtractorKNNConst {
    // Required method
    fn as_raw_mut_BackgroundSubtractorKNN(&mut self) -> *mut c_void;

    // Provided methods
    fn set_history(&mut self, history: i32) -> Result<()> { ... }
    fn set_n_samples(&mut self, _n_n: i32) -> Result<()> { ... }
    fn set_dist2_threshold(&mut self, _dist2_threshold: f64) -> Result<()> { ... }
    fn setk_nn_samples(&mut self, _nk_nn: i32) -> Result<()> { ... }
    fn set_detect_shadows(&mut self, detect_shadows: bool) -> Result<()> { ... }
    fn set_shadow_value(&mut self, value: i32) -> Result<()> { ... }
    fn set_shadow_threshold(&mut self, threshold: f64) -> Result<()> { ... }
}
Expand description

K-nearest neighbours - based Background/Foreground Segmentation Algorithm.

The class implements the K-nearest neighbours background subtraction described in Zivkovic2006 . Very efficient if number of foreground pixels is low.

Required Methods§

Provided Methods§

source

fn set_history(&mut self, history: i32) -> Result<()>

Sets the number of last frames that affect the background model

source

fn set_n_samples(&mut self, _n_n: i32) -> Result<()>

Sets the number of data samples in the background model.

The model needs to be reinitalized to reserve memory.

source

fn set_dist2_threshold(&mut self, _dist2_threshold: f64) -> Result<()>

Sets the threshold on the squared distance

source

fn setk_nn_samples(&mut self, _nk_nn: i32) -> Result<()>

Sets the k in the kNN. How many nearest neighbours need to match.

source

fn set_detect_shadows(&mut self, detect_shadows: bool) -> Result<()>

Enables or disables shadow detection

source

fn set_shadow_value(&mut self, value: i32) -> Result<()>

Sets the shadow value

source

fn set_shadow_threshold(&mut self, threshold: f64) -> Result<()>

Sets the shadow threshold

Implementors§