Trait opencv::ml::DTrees_SplitTrait
source · pub trait DTrees_SplitTrait: DTrees_SplitTraitConst {
// Required method
fn as_raw_mut_DTrees_Split(&mut self) -> *mut c_void;
// Provided methods
fn set_var_idx(&mut self, val: i32) { ... }
fn set_inversed(&mut self, val: bool) { ... }
fn set_quality(&mut self, val: f32) { ... }
fn set_next(&mut self, val: i32) { ... }
fn set_c(&mut self, val: f32) { ... }
fn set_subset_ofs(&mut self, val: i32) { ... }
}
Expand description
Mutable methods for crate::ml::DTrees_Split
Required Methods§
fn as_raw_mut_DTrees_Split(&mut self) -> *mut c_void
Provided Methods§
sourcefn set_var_idx(&mut self, val: i32)
fn set_var_idx(&mut self, val: i32)
Index of variable on which the split is created.
sourcefn set_inversed(&mut self, val: bool)
fn set_inversed(&mut self, val: bool)
If true, then the inverse split rule is used (i.e. left and right branches are exchanged in the rule expressions below).
sourcefn set_quality(&mut self, val: f32)
fn set_quality(&mut self, val: f32)
The split quality, a positive number. It is used to choose the best split.
sourcefn set_c(&mut self, val: f32)
fn set_c(&mut self, val: f32)
< The threshold value in case of split on an ordered variable. The rule is:
if var_value < c
then next_node <- left
else next_node <- right
sourcefn set_subset_ofs(&mut self, val: i32)
fn set_subset_ofs(&mut self, val: i32)
< Offset of the bitset used by the split on a categorical variable. The rule is:
if bitset[var_value] == 1
then next_node <- left
else next_node <- right