Module opencv::objdetect

source ·
Expand description

Object Detection

Cascade Classifier for Object Detection

The object detector described below has been initially proposed by Paul Viola Viola01 and improved by Rainer Lienhart Lienhart02 .

First, a classifier (namely a cascade of boosted classifiers working with haar-like features) is trained with a few hundred sample views of a particular object (i.e., a face or a car), called positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the training) in an input image. The classifier outputs a “1” if the region is likely to show the object (i.e., face/car), and “0” otherwise. To search for the object in the whole image one can move the search window across the image and check every location using the classifier. The classifier is designed so that it can be easily “resized” in order to be able to find the objects of interest at different sizes, which is more efficient than resizing the image itself. So, to find an object of an unknown size in the image the scan procedure should be done several times at different scales.

The word “cascade” in the classifier name means that the resultant classifier consists of several simpler classifiers (stages) that are applied subsequently to a region of interest until at some stage the candidate is rejected or all the stages are passed. The word “boosted” means that the classifiers at every stage of the cascade are complex themselves and they are built out of basic classifiers using one of four different boosting techniques (weighted voting). Currently Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic classifiers, and are calculated as described below. The current algorithm uses the following Haar-like features:

image

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region of interest and the scale (this scale is not the same as the scale used at the detection stage, though these two scales are multiplied). For example, in the case of the third line feature (2c) the response is calculated as the difference between the sum of image pixels under the rectangle covering the whole feature (including the two white stripes and the black stripe in the middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to compensate for the differences in the size of areas. The sums of pixel values over a rectangular regions are calculated rapidly using integral images (see below and the integral description).

Check @ref tutorial_cascade_classifier “the corresponding tutorial” for more details.

The following reference is for the detection part only. There is a separate application called opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.

Note: In the new C++ interface it is also possible to use LBP (local binary pattern) features in addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at https://github.com/SvHey/thesis/blob/master/Literature/ObjectDetection/violaJones_CVPR2001.pdf

HOG (Histogram of Oriented Gradients) descriptor and object detector

QRCode detection and encoding

DNN-based face detection and recognition

Check @ref tutorial_dnn_face “the corresponding tutorial” for more details.

Common functions and classes

ArUco markers and boards detection for robust camera pose estimation

   ArUco Marker Detection
   Square fiducial markers (also known as Augmented Reality Markers) are useful for easy,
   fast and robust camera pose estimation.

   The main functionality of ArucoDetector class is detection of markers in an image. If the markers are grouped
   as a board, then you can try to recover the missing markers with ArucoDetector::refineDetectedMarkers().
   ArUco markers can also be used for advanced chessboard corner finding. To do this, group the markers in the
   CharucoBoard and find the corners of the chessboard with the CharucoDetector::detectBoard().

   The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado [Aruco2014](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Aruco2014).

   Markers can also be detected based on the AprilTag 2 [wang2016iros](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_wang2016iros) fiducial detection method.

See also

Aruco2014 This code has been originally developed by Sergio Garrido-Jurado as a project for Google Summer of Code 2015 (GSoC 15).

Modules

Structs

The main functionality of ArucoDetector class is detection of markers in an image with detectMarkers() method.
Board of ArUco markers
@example samples/cpp/facedetect.cpp This program demonstrates usage of the Cascade classifier class \image html Cascade_Classifier_Tutorial_Result_Haar.jpg “Sample screenshot” width=321 height=254
ChArUco board is a planar chessboard where the markers are placed inside the white squares of a chessboard.
struct for detection region of interest (ROI)
struct DetectorParameters is used by ArucoDetector
Dictionary/Set of markers, it contains the inner codification
Planar board with grid arrangement of markers
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
QR code encoder parameters.
struct RefineParameters is used by ArucoDetector
This class is used for grouping object candidates detected by Cascade Classifier, HOG etc.

Enums

Constants

Tag and corners detection based on the AprilTag 2 approach wang2016iros
ArUco approach and refine the corners locations using the contour-points line fitting
Tag and corners detection based on the ArUco approach
ArUco approach and refine the corners locations using corner subpixel accuracy
4x4 bits, minimum hamming distance between any two codes = 4, 50 codes
4x4 bits, minimum hamming distance between any two codes = 3, 100 codes
4x4 bits, minimum hamming distance between any two codes = 3, 250 codes
4x4 bits, minimum hamming distance between any two codes = 2, 1000 codes
5x5 bits, minimum hamming distance between any two codes = 8, 50 codes
5x5 bits, minimum hamming distance between any two codes = 7, 100 codes
5x5 bits, minimum hamming distance between any two codes = 6, 250 codes
5x5 bits, minimum hamming distance between any two codes = 5, 1000 codes
6x6 bits, minimum hamming distance between any two codes = 13, 50 codes
6x6 bits, minimum hamming distance between any two codes = 12, 100 codes
6x6 bits, minimum hamming distance between any two codes = 11, 250 codes
6x6 bits, minimum hamming distance between any two codes = 9, 1000 codes
7x7 bits, minimum hamming distance between any two codes = 19, 50 codes
7x7 bits, minimum hamming distance between any two codes = 18, 100 codes
7x7 bits, minimum hamming distance between any two codes = 17, 250 codes
7x7 bits, minimum hamming distance between any two codes = 14, 1000 codes
4x4 bits, minimum hamming distance between any two codes = 5, 30 codes
5x5 bits, minimum hamming distance between any two codes = 9, 35 codes
6x6 bits, minimum hamming distance between any two codes = 10, 2320 codes
6x6 bits, minimum hamming distance between any two codes = 11, 587 codes
6x6 bits, minimum hamming distance between any two codes = 3, 1024 codes
Default nlevels value.

Traits

The main functionality of ArucoDetector class is detection of markers in an image with detectMarkers() method.
Board of ArUco markers
@example samples/cpp/facedetect.cpp This program demonstrates usage of the Cascade classifier class \image html Cascade_Classifier_Tutorial_Result_Haar.jpg “Sample screenshot” width=321 height=254
ChArUco board is a planar chessboard where the markers are placed inside the white squares of a chessboard.
struct for detection region of interest (ROI)
struct DetectorParameters is used by ArucoDetector
Dictionary/Set of markers, it contains the inner codification
DNN-based face detector
DNN-based face recognizer
Planar board with grid arrangement of markers
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
This class is used for grouping object candidates detected by Cascade Classifier, HOG etc.

Functions

Draws a set of Charuco corners
Draw a set of detected ChArUco Diamond markers
Draw detected markers in image
Extend base dictionary by new nMarkers
Generate a canonical marker image
Returns one of the predefined dictionaries defined in PredefinedDictionaryType
Returns one of the predefined dictionaries referenced by DICT_*.
Groups the object candidate rectangles.
Groups the object candidate rectangles.
Groups the object candidate rectangles.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Groups the object candidate rectangles.

Type Definitions