- num_components: The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It’s useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.
- threshold: The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
- num_components see FisherFaceRecognizer::create.
- threshold see FisherFaceRecognizer::create.
- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The labels corresponding to the projections.
- num_components: 0
- threshold: DBL_MAX