pub trait TrainDataConst {
Show 35 methods
fn as_raw_TrainData(&self) -> *const c_void;
fn get_layout(&self) -> Result<i32> { ... }
fn get_n_train_samples(&self) -> Result<i32> { ... }
fn get_n_test_samples(&self) -> Result<i32> { ... }
fn get_n_samples(&self) -> Result<i32> { ... }
fn get_n_vars(&self) -> Result<i32> { ... }
fn get_n_all_vars(&self) -> Result<i32> { ... }
fn get_sample(
&self,
var_idx: &dyn ToInputArray,
sidx: i32,
buf: &mut f32
) -> Result<()> { ... }
fn get_samples(&self) -> Result<Mat> { ... }
fn get_missing(&self) -> Result<Mat> { ... }
fn get_train_samples(
&self,
layout: i32,
compress_samples: bool,
compress_vars: bool
) -> Result<Mat> { ... }
fn get_train_responses(&self) -> Result<Mat> { ... }
fn get_train_norm_cat_responses(&self) -> Result<Mat> { ... }
fn get_test_responses(&self) -> Result<Mat> { ... }
fn get_test_norm_cat_responses(&self) -> Result<Mat> { ... }
fn get_responses(&self) -> Result<Mat> { ... }
fn get_norm_cat_responses(&self) -> Result<Mat> { ... }
fn get_sample_weights(&self) -> Result<Mat> { ... }
fn get_train_sample_weights(&self) -> Result<Mat> { ... }
fn get_test_sample_weights(&self) -> Result<Mat> { ... }
fn get_var_idx(&self) -> Result<Mat> { ... }
fn get_var_type(&self) -> Result<Mat> { ... }
fn get_var_symbol_flags(&self) -> Result<Mat> { ... }
fn get_response_type(&self) -> Result<i32> { ... }
fn get_train_sample_idx(&self) -> Result<Mat> { ... }
fn get_test_sample_idx(&self) -> Result<Mat> { ... }
fn get_values(
&self,
vi: i32,
sidx: &dyn ToInputArray,
values: &mut f32
) -> Result<()> { ... }
fn get_norm_cat_values(
&self,
vi: i32,
sidx: &dyn ToInputArray,
values: &mut i32
) -> Result<()> { ... }
fn get_default_subst_values(&self) -> Result<Mat> { ... }
fn get_cat_count(&self, vi: i32) -> Result<i32> { ... }
fn get_class_labels(&self) -> Result<Mat> { ... }
fn get_cat_ofs(&self) -> Result<Mat> { ... }
fn get_cat_map(&self) -> Result<Mat> { ... }
fn get_test_samples(&self) -> Result<Mat> { ... }
fn get_names(&self, names: &mut Vector<String>) -> Result<()> { ... }
}
Expand description
Class encapsulating training data.
Please note that the class only specifies the interface of training data, but not implementation. All the statistical model classes in ml module accepts Ptr<TrainData> as parameter. In other words, you can create your own class derived from TrainData and pass smart pointer to the instance of this class into StatModel::train.
See also
@ref ml_intro_data
Required Methods
fn as_raw_TrainData(&self) -> *const c_void
Provided Methods
fn get_layout(&self) -> Result<i32>
fn get_n_train_samples(&self) -> Result<i32>
fn get_n_test_samples(&self) -> Result<i32>
fn get_n_samples(&self) -> Result<i32>
fn get_n_vars(&self) -> Result<i32>
fn get_n_all_vars(&self) -> Result<i32>
fn get_sample(
&self,
var_idx: &dyn ToInputArray,
sidx: i32,
buf: &mut f32
) -> Result<()>
fn get_samples(&self) -> Result<Mat>
fn get_missing(&self) -> Result<Mat>
sourcefn get_train_samples(
&self,
layout: i32,
compress_samples: bool,
compress_vars: bool
) -> Result<Mat>
fn get_train_samples(
&self,
layout: i32,
compress_samples: bool,
compress_vars: bool
) -> Result<Mat>
Returns matrix of train samples
Parameters
- layout: The requested layout. If it’s different from the initial one, the matrix is transposed. See ml::SampleTypes.
- compressSamples: if true, the function returns only the training samples (specified by sampleIdx)
- compressVars: if true, the function returns the shorter training samples, containing only the active variables.
In current implementation the function tries to avoid physical data copying and returns the matrix stored inside TrainData (unless the transposition or compression is needed).
C++ default parameters
- layout: ROW_SAMPLE
- compress_samples: true
- compress_vars: true
sourcefn get_train_responses(&self) -> Result<Mat>
fn get_train_responses(&self) -> Result<Mat>
Returns the vector of responses
The function returns ordered or the original categorical responses. Usually it’s used in regression algorithms.
sourcefn get_train_norm_cat_responses(&self) -> Result<Mat>
fn get_train_norm_cat_responses(&self) -> Result<Mat>
Returns the vector of normalized categorical responses
The function returns vector of responses. Each response is integer from 0
to <number of classes>-1
. The actual label value can be retrieved then from the class label vector, see
TrainData::getClassLabels.
fn get_test_responses(&self) -> Result<Mat>
fn get_test_norm_cat_responses(&self) -> Result<Mat>
fn get_responses(&self) -> Result<Mat>
fn get_norm_cat_responses(&self) -> Result<Mat>
fn get_sample_weights(&self) -> Result<Mat>
fn get_train_sample_weights(&self) -> Result<Mat>
fn get_test_sample_weights(&self) -> Result<Mat>
fn get_var_idx(&self) -> Result<Mat>
fn get_var_type(&self) -> Result<Mat>
fn get_var_symbol_flags(&self) -> Result<Mat>
fn get_response_type(&self) -> Result<i32>
fn get_train_sample_idx(&self) -> Result<Mat>
fn get_test_sample_idx(&self) -> Result<Mat>
fn get_values(
&self,
vi: i32,
sidx: &dyn ToInputArray,
values: &mut f32
) -> Result<()>
fn get_norm_cat_values(
&self,
vi: i32,
sidx: &dyn ToInputArray,
values: &mut i32
) -> Result<()>
fn get_default_subst_values(&self) -> Result<Mat>
fn get_cat_count(&self, vi: i32) -> Result<i32>
sourcefn get_class_labels(&self) -> Result<Mat>
fn get_class_labels(&self) -> Result<Mat>
Returns the vector of class labels
The function returns vector of unique labels occurred in the responses.
fn get_cat_ofs(&self) -> Result<Mat>
fn get_cat_map(&self) -> Result<Mat>
sourcefn get_test_samples(&self) -> Result<Mat>
fn get_test_samples(&self) -> Result<Mat>
Returns matrix of test samples