1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Extended Image Processing
//!    # Structured forests for fast edge detection
//! 
//! This module contains implementations of modern structured edge detection algorithms,
//! i.e. algorithms which somehow takes into account pixel affinities in natural images.
//! 
//!    # EdgeBoxes
//! 
//!    # Filters
//! 
//!    # Superpixels
//! 
//!    # Image segmentation
//! 
//!    # Fast line detector
//! 
//!    # EdgeDrawing
//! 
//! EDGE DRAWING LIBRARY FOR GEOMETRIC FEATURE EXTRACTION AND VALIDATION
//! 
//! Edge Drawing (ED) algorithm is an proactive approach on edge detection problem. In contrast to many other existing edge detection algorithms which follow a subtractive
//! approach (i.e. after applying gradient filters onto an image eliminating pixels w.r.t. several rules, e.g. non-maximal suppression and hysteresis in Canny), ED algorithm
//! works via an additive strategy, i.e. it picks edge pixels one by one, hence the name Edge Drawing. Then we process those random shaped edge segments to extract higher level
//! edge features, i.e. lines, circles, ellipses, etc. The popular method of extraction edge pixels from the thresholded gradient magnitudes is non-maximal supression that tests
//! every pixel whether it has the maximum gradient response along its gradient direction and eliminates if it does not. However, this method does not check status of the
//! neighboring pixels, and therefore might result low quality (in terms of edge continuity, smoothness, thinness, localization) edge segments. Instead of non-maximal supression,
//! ED points a set of edge pixels and join them by maximizing the total gradient response of edge segments. Therefore it can extract high quality edge segments without need for
//! an additional hysteresis step.
//! 
//!    # Fourier descriptors
//! 
//!    # Binary morphology on run-length encoded image
//! 
//!    These functions support morphological operations on binary images. In order to be fast and space efficient binary images are encoded with a run-length representation.
//!    This representation groups continuous horizontal sequences of "on" pixels together in a "run". A run is charactarized by the column position of the first pixel in the run, the column
//!    position of the last pixel in the run and the row position. This representation is very compact for binary images which contain large continuous areas of "on" and "off" pixels. A checkerboard
//!    pattern would be a good example. The representation is not so suitable for binary images created from random noise images or other images where little correlation between neighboring pixels
//!    exists.
//! 
//!    The morphological operations supported here are very similar to the operations supported in the imgproc module. In general they are fast. However on several occasions they are slower than the functions
//!    from imgproc. The structuring elements of cv::MORPH_RECT and cv::MORPH_CROSS have very good support from the imgproc module. Also small structuring elements are very fast in imgproc (presumably
//!    due to opencl support). Therefore the functions from this module are recommended for larger structuring elements (cv::MORPH_ELLIPSE or self defined structuring elements). A sample application
//!    (run_length_morphology_demo) is supplied which allows to compare the speed of some morphological operations for the functions using run-length encoding and the imgproc functions for a given image.
//! 
//!    Run length encoded images are stored in standard opencv images. Images have a single column of cv::Point3i elements. The number of rows is the number of run + 1. The first row contains
//!    the size of the original (not encoded) image.  For the runs the following mapping is used (x: column begin, y: column end (last column), z: row).
//! 
//!    The size of the original image is required for compatibility with the imgproc functions when the boundary handling requires that pixel outside the image boundary are
//!    "on".
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::DTFilterConst, super::DTFilter, super::GuidedFilterConst, super::GuidedFilter, super::AdaptiveManifoldFilterConst, super::AdaptiveManifoldFilter, super::FastBilateralSolverFilterConst, super::FastBilateralSolverFilter, super::FastGlobalSmootherFilterConst, super::FastGlobalSmootherFilter, super::DisparityFilterConst, super::DisparityFilter, super::DisparityWLSFilterConst, super::DisparityWLSFilter, super::SparseMatchInterpolatorConst, super::SparseMatchInterpolator, super::EdgeAwareInterpolatorConst, super::EdgeAwareInterpolator, super::RICInterpolatorConst, super::RICInterpolator, super::RFFeatureGetterConst, super::RFFeatureGetter, super::StructuredEdgeDetectionConst, super::StructuredEdgeDetection, super::EdgeBoxesConst, super::EdgeBoxes, super::EdgeDrawingConst, super::EdgeDrawing, super::SuperpixelSEEDSConst, super::SuperpixelSEEDS, super::GraphSegmentationConst, super::GraphSegmentation, super::SelectiveSearchSegmentationStrategyConst, super::SelectiveSearchSegmentationStrategy, super::SelectiveSearchSegmentationStrategyColorConst, super::SelectiveSearchSegmentationStrategyColor, super::SelectiveSearchSegmentationStrategySizeConst, super::SelectiveSearchSegmentationStrategySize, super::SelectiveSearchSegmentationStrategyTextureConst, super::SelectiveSearchSegmentationStrategyTexture, super::SelectiveSearchSegmentationStrategyFillConst, super::SelectiveSearchSegmentationStrategyFill, super::SelectiveSearchSegmentationStrategyMultipleConst, super::SelectiveSearchSegmentationStrategyMultiple, super::SelectiveSearchSegmentationConst, super::SelectiveSearchSegmentation, super::SuperpixelSLICConst, super::SuperpixelSLIC, super::SuperpixelLSCConst, super::SuperpixelLSC, super::FastLineDetectorConst, super::FastLineDetector, super::ContourFittingTraitConst, super::ContourFittingTrait, super::RidgeDetectionFilterConst, super::RidgeDetectionFilter };
}

pub const AM_FILTER: i32 = 4;
pub const ARO_0_45: i32 = 0;
pub const ARO_315_0: i32 = 3;
pub const ARO_315_135: i32 = 6;
pub const ARO_315_45: i32 = 4;
pub const ARO_45_135: i32 = 5;
pub const ARO_45_90: i32 = 1;
pub const ARO_90_135: i32 = 2;
pub const ARO_CTR_HOR: i32 = 7;
pub const ARO_CTR_VER: i32 = 8;
/// Classic Niblack binarization. See [Niblack1985](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Niblack1985) .
pub const BINARIZATION_NIBLACK: i32 = 0;
/// NICK technique. See [Khurshid2009](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Khurshid2009) .
pub const BINARIZATION_NICK: i32 = 3;
/// Sauvola's technique. See [Sauvola1997](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Sauvola1997) .
pub const BINARIZATION_SAUVOLA: i32 = 1;
/// Wolf's technique. See [Wolf2004](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Wolf2004) .
pub const BINARIZATION_WOLF: i32 = 2;
pub const DTF_IC: i32 = 1;
pub const DTF_NC: i32 = 0;
pub const DTF_RF: i32 = 2;
pub const FHT_ADD: i32 = 2;
pub const FHT_AVE: i32 = 3;
pub const FHT_MAX: i32 = 1;
pub const FHT_MIN: i32 = 0;
pub const GUIDED_FILTER: i32 = 3;
pub const HDO_DESKEW: i32 = 1;
pub const HDO_RAW: i32 = 0;
pub const MSLIC: i32 = 102;
/// Skip validations of image borders.
pub const RO_IGNORE_BORDERS: i32 = 1;
/// Validate each rule in a proper way.
pub const RO_STRICT: i32 = 0;
pub const SLIC: i32 = 100;
pub const SLICO: i32 = 101;
pub const THINNING_GUOHALL: i32 = 1;
pub const THINNING_ZHANGSUEN: i32 = 0;
/// ![inline formula](https://latex.codecogs.com/png.latex?dot%28I1%2CI2%29%2F%28%7CI1%7C%2A%7CI2%7C%29)
pub const WMF_COS: i32 = 8;
/// ![inline formula](https://latex.codecogs.com/png.latex?exp%28%2D%7CI1%2DI2%7C%5E2%2F%282%2Asigma%5E2%29%29)
pub const WMF_EXP: i32 = 1;
/// ![inline formula](https://latex.codecogs.com/png.latex?%28%7CI1%2DI2%7C%2Bsigma%29%5E%2D1)
pub const WMF_IV1: i32 = 2;
/// ![inline formula](https://latex.codecogs.com/png.latex?%28%7CI1%2DI2%7C%5E2%2Bsigma%5E2%29%5E%2D1)
pub const WMF_IV2: i32 = 4;
/// ![inline formula](https://latex.codecogs.com/png.latex?%28min%28r1%2Cr2%29%2Bmin%28g1%2Cg2%29%2Bmin%28b1%2Cb2%29%29%2F%28max%28r1%2Cr2%29%2Bmax%28g1%2Cg2%29%2Bmax%28b1%2Cb2%29%29)
pub const WMF_JAC: i32 = 16;
/// unweighted
pub const WMF_OFF: i32 = 32;
///   Specifies the part of Hough space to calculate
/// @details The enum specifies the part of Hough space to calculate. Each
/// member specifies primarily direction of lines (horizontal or vertical)
/// and the direction of angle changes.
/// Direction of angle changes is from multiples of 90 to odd multiples of 45.
/// The image considered to be written top-down and left-to-right.
/// Angles are started from vertical line and go clockwise.
/// Separate quarters and halves are written in orientation they should be in
/// full Hough space.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum AngleRangeOption {
	ARO_0_45 = 0,
	ARO_45_90 = 1,
	ARO_90_135 = 2,
	ARO_315_0 = 3,
	ARO_315_45 = 4,
	ARO_45_135 = 5,
	ARO_315_135 = 6,
	ARO_CTR_HOR = 7,
	ARO_CTR_VER = 8,
}

opencv_type_enum! { crate::ximgproc::AngleRangeOption }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum EdgeAwareFiltersList {
	DTF_NC = 0,
	DTF_IC = 1,
	DTF_RF = 2,
	GUIDED_FILTER = 3,
	AM_FILTER = 4,
}

opencv_type_enum! { crate::ximgproc::EdgeAwareFiltersList }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum EdgeDrawing_GradientOperator {
	PREWITT = 0,
	SOBEL = 1,
	SCHARR = 2,
	LSD = 3,
}

opencv_type_enum! { crate::ximgproc::EdgeDrawing_GradientOperator }

///   Specifies to do or not to do skewing of Hough transform image
/// @details The enum specifies to do or not to do skewing of Hough transform image
/// so it would be no cycling in Hough transform image through borders of image.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum HoughDeskewOption {
	HDO_RAW = 0,
	HDO_DESKEW = 1,
}

opencv_type_enum! { crate::ximgproc::HoughDeskewOption }

///   Specifies binary operations.
/// @details The enum specifies binary operations, that is such ones which involve
///          two operands. Formally, a binary operation @f$ f @f$ on a set @f$ S @f$
///          is a binary relation that maps elements of the Cartesian product
///          @f$ S \times S @f$ to @f$ S @f$:
///           @f[ f: S \times S \to S @f]
/// @ingroup MinUtils_MathOper
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum HoughOp {
	FHT_MIN = 0,
	FHT_MAX = 1,
	FHT_ADD = 2,
	FHT_AVE = 3,
}

opencv_type_enum! { crate::ximgproc::HoughOp }

/// Specifies the binarization method to use in cv::ximgproc::niBlackThreshold
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum LocalBinarizationMethods {
	/// Classic Niblack binarization. See [Niblack1985](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Niblack1985) .
	BINARIZATION_NIBLACK = 0,
	/// Sauvola's technique. See [Sauvola1997](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Sauvola1997) .
	BINARIZATION_SAUVOLA = 1,
	/// Wolf's technique. See [Wolf2004](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Wolf2004) .
	BINARIZATION_WOLF = 2,
	/// NICK technique. See [Khurshid2009](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Khurshid2009) .
	BINARIZATION_NICK = 3,
}

opencv_type_enum! { crate::ximgproc::LocalBinarizationMethods }

///   Specifies the degree of rules validation.
/// @details The enum specifies the degree of rules validation. This can be used,
///          for example, to choose a proper way of input arguments validation.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum RulesOption {
	/// Validate each rule in a proper way.
	RO_STRICT = 0,
	/// Skip validations of image borders.
	RO_IGNORE_BORDERS = 1,
}

opencv_type_enum! { crate::ximgproc::RulesOption }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum SLICType {
	SLIC = 100,
	SLICO = 101,
	MSLIC = 102,
}

opencv_type_enum! { crate::ximgproc::SLICType }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum ThinningTypes {
	THINNING_ZHANGSUEN = 0,
	THINNING_GUOHALL = 1,
}

opencv_type_enum! { crate::ximgproc::ThinningTypes }

/// Specifies weight types of weighted median filter.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum WMFWeightType {
	/// ![inline formula](https://latex.codecogs.com/png.latex?exp%28%2D%7CI1%2DI2%7C%5E2%2F%282%2Asigma%5E2%29%29)
	WMF_EXP = 1,
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28%7CI1%2DI2%7C%2Bsigma%29%5E%2D1)
	WMF_IV1 = 2,
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28%7CI1%2DI2%7C%5E2%2Bsigma%5E2%29%5E%2D1)
	WMF_IV2 = 4,
	/// ![inline formula](https://latex.codecogs.com/png.latex?dot%28I1%2CI2%29%2F%28%7CI1%7C%2A%7CI2%7C%29)
	WMF_COS = 8,
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28min%28r1%2Cr2%29%2Bmin%28g1%2Cg2%29%2Bmin%28b1%2Cb2%29%29%2F%28max%28r1%2Cr2%29%2Bmax%28g1%2Cg2%29%2Bmax%28b1%2Cb2%29%29)
	WMF_JAC = 16,
	/// unweighted
	WMF_OFF = 32,
}

opencv_type_enum! { crate::ximgproc::WMFWeightType }

/// ## C++ default parameters
/// * contrast: 1
/// * shortrange: 3
/// * longrange: 9
#[inline]
pub fn bright_edges(_original: &mut core::Mat, _edgeview: &mut core::Mat, contrast: i32, shortrange: i32, longrange: i32) -> Result<()> {
	let ret = unsafe { sys::cv_ximgproc_BrightEdges_MatR_MatR_int_int_int(_original.as_raw_mut_Mat(), _edgeview.as_raw_mut_Mat(), contrast, shortrange, longrange) }.into_result()?;
	Ok(ret)
}

///   Calculates 2D Fast Hough transform of an image.
/// ## Parameters
/// * dst: The destination image, result of transformation.
/// * src: The source (input) image.
/// * dstMatDepth: The depth of destination image
/// * op: The operation to be applied, see cv::HoughOp
/// * angleRange: The part of Hough space to calculate, see cv::AngleRangeOption
/// * makeSkew: Specifies to do or not to do image skewing, see cv::HoughDeskewOption
/// 
/// The function calculates the fast Hough transform for full, half or quarter
/// range of angles.
/// 
/// ## C++ default parameters
/// * angle_range: ARO_315_135
/// * op: FHT_ADD
/// * make_skew: HDO_DESKEW
#[inline]
pub fn fast_hough_transform(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dst_mat_depth: i32, angle_range: i32, op: i32, make_skew: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_FastHoughTransform_const__InputArrayR_const__OutputArrayR_int_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), dst_mat_depth, angle_range, op, make_skew) }.into_result()?;
	Ok(ret)
}

///   Applies X Deriche filter to an image.
/// 
/// For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
/// 
/// ## Parameters
/// * op: Source 8-bit or 16bit image, 1-channel or 3-channel image.
/// * dst: result CV_32FC image with same number of channel than _op.
/// * alpha: double see paper
/// * omega: double see paper
#[inline]
pub fn gradient_deriche_x(op: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, alpha: f64, omega: f64) -> Result<()> {
	input_array_arg!(op);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_GradientDericheX_const__InputArrayR_const__OutputArrayR_double_double(op.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, omega) }.into_result()?;
	Ok(ret)
}

///   Applies Y Deriche filter to an image.
/// 
/// For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
/// 
/// ## Parameters
/// * op: Source 8-bit or 16bit image, 1-channel or 3-channel image.
/// * dst: result CV_32FC image with same number of channel than _op.
/// * alpha: double see paper
/// * omega: double see paper
#[inline]
pub fn gradient_deriche_y(op: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, alpha: f64, omega: f64) -> Result<()> {
	input_array_arg!(op);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_GradientDericheY_const__InputArrayR_const__OutputArrayR_double_double(op.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, omega) }.into_result()?;
	Ok(ret)
}

#[inline]
pub fn gradient_paillou_x(op: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray, alpha: f64, omega: f64) -> Result<()> {
	input_array_arg!(op);
	output_array_arg!(_dst);
	let ret = unsafe { sys::cv_ximgproc_GradientPaillouX_const__InputArrayR_const__OutputArrayR_double_double(op.as_raw__InputArray(), _dst.as_raw__OutputArray(), alpha, omega) }.into_result()?;
	Ok(ret)
}

///   Applies Paillou filter to an image.
/// 
/// For more details about this implementation, please see [paillou1997detecting](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_paillou1997detecting)
/// 
/// ## Parameters
/// * op: Source CV_8U(S) or CV_16U(S), 1-channel or 3-channels image.
/// * _dst: result CV_32F image with same number of channel than op.
/// * omega: double see paper
/// * alpha: double see paper
/// ## See also
/// GradientPaillouX, GradientPaillouY
#[inline]
pub fn gradient_paillou_y(op: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray, alpha: f64, omega: f64) -> Result<()> {
	input_array_arg!(op);
	output_array_arg!(_dst);
	let ret = unsafe { sys::cv_ximgproc_GradientPaillouY_const__InputArrayR_const__OutputArrayR_double_double(op.as_raw__InputArray(), _dst.as_raw__OutputArray(), alpha, omega) }.into_result()?;
	Ok(ret)
}

///   Calculates coordinates of line segment corresponded by point in Hough space.
/// ## Parameters
/// * houghPoint: Point in Hough space.
/// * srcImgInfo: The source (input) image of Hough transform.
/// * angleRange: The part of Hough space where point is situated, see cv::AngleRangeOption
/// * makeSkew: Specifies to do or not to do image skewing, see cv::HoughDeskewOption
/// * rules: Specifies strictness of line segment calculating, see cv::RulesOption
/// @retval  [Vec4i]     Coordinates of line segment corresponded by point in Hough space.
/// @remarks If rules parameter set to RO_STRICT
///        then returned line cut along the border of source image.
/// @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
///        the incorrect part of Hough image, returned line will not intersect source image.
/// 
/// The function calculates coordinates of line segment corresponded by point in Hough space.
/// 
/// ## C++ default parameters
/// * angle_range: ARO_315_135
/// * make_skew: HDO_DESKEW
/// * rules: RO_IGNORE_BORDERS
#[inline]
pub fn hough_point2_line(hough_point: core::Point, src_img_info: &dyn core::ToInputArray, angle_range: i32, make_skew: i32, rules: i32) -> Result<core::Vec4i> {
	input_array_arg!(src_img_info);
	let ret = unsafe { sys::cv_ximgproc_HoughPoint2Line_const_PointR_const__InputArrayR_int_int_int(&hough_point, src_img_info.as_raw__InputArray(), angle_range, make_skew, rules) }.into_result()?;
	Ok(ret)
}

///   Calculates an affine transformation that normalize given image using Pei&Lin Normalization.
/// 
/// Assume given image ![inline formula](https://latex.codecogs.com/png.latex?I%3DT%28%5Cbar%7BI%7D%29) where ![inline formula](https://latex.codecogs.com/png.latex?%5Cbar%7BI%7D) is a normalized image and ![inline formula](https://latex.codecogs.com/png.latex?T) is an affine transformation distorting this image by translation, rotation, scaling and skew.
/// The function returns an affine transformation matrix corresponding to the transformation ![inline formula](https://latex.codecogs.com/png.latex?T%5E%7B%2D1%7D) described in [PeiLin95].
/// For more details about this implementation, please see
/// [PeiLin95] Soo-Chang Pei and Chao-Nan Lin. Image normalization for pattern recognition. Image and Vision Computing, Vol. 13, N.10, pp. 711-723, 1995.
/// 
/// ## Parameters
/// * I: Given transformed image.
/// ## Returns
/// Transformation matrix corresponding to inversed image transformation
#[inline]
pub fn pei_lin_normalization(i: &dyn core::ToInputArray) -> Result<core::Matx23d> {
	input_array_arg!(i);
	let ret = unsafe { sys::cv_ximgproc_PeiLinNormalization_const__InputArrayR(i.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

///   Calculates an affine transformation that normalize given image using Pei&Lin Normalization.
/// 
/// Assume given image ![inline formula](https://latex.codecogs.com/png.latex?I%3DT%28%5Cbar%7BI%7D%29) where ![inline formula](https://latex.codecogs.com/png.latex?%5Cbar%7BI%7D) is a normalized image and ![inline formula](https://latex.codecogs.com/png.latex?T) is an affine transformation distorting this image by translation, rotation, scaling and skew.
/// The function returns an affine transformation matrix corresponding to the transformation ![inline formula](https://latex.codecogs.com/png.latex?T%5E%7B%2D1%7D) described in [PeiLin95].
/// For more details about this implementation, please see
/// [PeiLin95] Soo-Chang Pei and Chao-Nan Lin. Image normalization for pattern recognition. Image and Vision Computing, Vol. 13, N.10, pp. 711-723, 1995.
/// 
/// ## Parameters
/// * I: Given transformed image.
/// ## Returns
/// Transformation matrix corresponding to inversed image transformation
/// 
/// ## Overloaded parameters
#[inline]
pub fn pei_lin_normalization_1(i: &dyn core::ToInputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(i);
	output_array_arg!(t);
	let ret = unsafe { sys::cv_ximgproc_PeiLinNormalization_const__InputArrayR_const__OutputArrayR(i.as_raw__InputArray(), t.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Simple one-line Adaptive Manifold Filter call.
/// 
/// ## Parameters
/// * joint: joint (also called as guided) image or array of images with any numbers of channels.
/// 
/// * src: filtering image with any numbers of channels.
/// 
/// * dst: output image.
/// 
/// * sigma_s: spatial standard deviation.
/// 
/// * sigma_r: color space standard deviation, it is similar to the sigma in the color space into
/// bilateralFilter.
/// 
/// * adjust_outliers: optional, specify perform outliers adjust operation or not, (Eq. 9) in the
/// original paper.
/// 
/// 
/// Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
/// color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
/// sigmas in bilateralFilter and dtFilter functions. see also: bilateralFilter, dtFilter, guidedFilter
/// 
/// ## C++ default parameters
/// * adjust_outliers: false
#[inline]
pub fn am_filter(joint: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sigma_s: f64, sigma_r: f64, adjust_outliers: bool) -> Result<()> {
	input_array_arg!(joint);
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_amFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_double_bool(joint.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_s, sigma_r, adjust_outliers) }.into_result()?;
	Ok(ret)
}

/// Performs anisotropic diffusion on an image.
/// 
/// The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%7B%5Cfrac%20%20%7B%5Cpartial%20I%7D%7B%5Cpartial%20t%7D%7D%3D%7B%5Cmathrm%20%20%7Bdiv%7D%7D%5Cleft%28c%28x%2Cy%2Ct%29%5Cnabla%20I%5Cright%29%3D%5Cnabla%20c%5Ccdot%20%5Cnabla%20I%2Bc%28x%2Cy%2Ct%29%5CDelta%20I)
/// 
/// Suggested functions for c(x,y,t) are:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?c%5Cleft%28%5C%7C%5Cnabla%20I%5C%7C%5Cright%29%3De%5E%7B%7B%2D%5Cleft%28%5C%7C%5Cnabla%20I%5C%7C%2FK%5Cright%29%5E%7B2%7D%7D%7D)
/// 
/// or
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%20c%5Cleft%28%5C%7C%5Cnabla%20I%5C%7C%5Cright%29%3D%7B%5Cfrac%20%7B1%7D%7B1%2B%5Cleft%28%7B%5Cfrac%20%20%7B%5C%7C%5Cnabla%20I%5C%7C%7D%7BK%7D%7D%5Cright%29%5E%7B2%7D%7D%7D%20)
/// 
/// ## Parameters
/// * src: Source image with 3 channels.
/// * dst: Destination image of the same size and the same number of channels as src .
/// * alpha: The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
/// * K: sensitivity to the edges
/// * niters: The number of iterations
#[inline]
pub fn anisotropic_diffusion(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, alpha: f32, k: f32, niters: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_anisotropicDiffusion_const__InputArrayR_const__OutputArrayR_float_float_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, k, niters) }.into_result()?;
	Ok(ret)
}

/// Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
/// For more details about this filter see [Cho2014](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Cho2014).
/// 
/// ## Parameters
/// * src: Source image whose depth is 8-bit UINT or 32-bit FLOAT
/// 
/// * dst: Destination image of the same size and type as src.
/// 
/// * fr: Radius of kernel to be used for filtering. It should be positive integer
/// 
/// * numIter: Number of iterations of algorithm, It should be positive integer
/// 
/// * sigmaAlpha: Controls the sharpness of the weight transition from edges to smooth/texture regions, where
/// a bigger value means sharper transition. When the value is negative, it is automatically calculated.
/// 
/// * sigmaAvg: Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
/// value is negative, it is automatically calculated as described in the paper.
/// ## See also
/// rollingGuidanceFilter, bilateralFilter
/// 
/// ## C++ default parameters
/// * fr: 3
/// * num_iter: 1
/// * sigma_alpha: -1.
/// * sigma_avg: -1.
#[inline]
pub fn bilateral_texture_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, fr: i32, num_iter: i32, sigma_alpha: f64, sigma_avg: f64) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_bilateralTextureFilter_const__InputArrayR_const__OutputArrayR_int_int_double_double(src.as_raw__InputArray(), dst.as_raw__OutputArray(), fr, num_iter, sigma_alpha, sigma_avg) }.into_result()?;
	Ok(ret)
}

///    Compares a color template against overlapped color image regions.
/// 
/// ## Parameters
/// * img: Image where the search is running. It must be 3 channels image
/// * templ: Searched template. It must be not greater than the source image and have 3 channels
/// * result: Map of comparison results. It must be single-channel 64-bit floating-point
#[inline]
pub fn color_match_template(img: &dyn core::ToInputArray, templ: &dyn core::ToInputArray, result: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(img);
	input_array_arg!(templ);
	output_array_arg!(result);
	let ret = unsafe { sys::cv_ximgproc_colorMatchTemplate_const__InputArrayR_const__InputArrayR_const__OutputArrayR(img.as_raw__InputArray(), templ.as_raw__InputArray(), result.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Function for computing the percent of "bad" pixels in the disparity map
/// (pixels where error is higher than a specified threshold)
/// 
/// ## Parameters
/// * GT: ground truth disparity map
/// 
/// * src: disparity map to evaluate
/// 
/// * ROI: region of interest
/// 
/// * thresh: threshold used to determine "bad" pixels
/// 
/// @result returns mean square error between GT and src
/// 
/// ## C++ default parameters
/// * thresh: 24
#[inline]
pub fn compute_bad_pixel_percent(gt: &dyn core::ToInputArray, src: &dyn core::ToInputArray, roi: core::Rect, thresh: i32) -> Result<f64> {
	input_array_arg!(gt);
	input_array_arg!(src);
	let ret = unsafe { sys::cv_ximgproc_computeBadPixelPercent_const__InputArrayR_const__InputArrayR_Rect_int(gt.as_raw__InputArray(), src.as_raw__InputArray(), roi.opencv_as_extern(), thresh) }.into_result()?;
	Ok(ret)
}

/// Function for computing mean square error for disparity maps
/// 
/// ## Parameters
/// * GT: ground truth disparity map
/// 
/// * src: disparity map to evaluate
/// 
/// * ROI: region of interest
/// 
/// @result returns mean square error between GT and src
#[inline]
pub fn compute_mse(gt: &dyn core::ToInputArray, src: &dyn core::ToInputArray, roi: core::Rect) -> Result<f64> {
	input_array_arg!(gt);
	input_array_arg!(src);
	let ret = unsafe { sys::cv_ximgproc_computeMSE_const__InputArrayR_const__InputArrayR_Rect(gt.as_raw__InputArray(), src.as_raw__InputArray(), roi.opencv_as_extern()) }.into_result()?;
	Ok(ret)
}

///   Contour sampling .
/// 
/// ## Parameters
/// * src: contour type vector<Point> , vector<Point2f>  or vector<Point2d>
/// * out: Mat of type CV_64FC2 and nbElt rows
/// * nbElt: number of points in out contour
#[inline]
pub fn contour_sampling(src: &dyn core::ToInputArray, out: &mut dyn core::ToOutputArray, nb_elt: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(out);
	let ret = unsafe { sys::cv_ximgproc_contourSampling_const__InputArrayR_const__OutputArrayR_int(src.as_raw__InputArray(), out.as_raw__OutputArray(), nb_elt) }.into_result()?;
	Ok(ret)
}

/// Computes the estimated covariance matrix of an image using the sliding
/// window forumlation.
/// 
/// ## Parameters
/// * src: The source image. Input image must be of a complex type.
/// * dst: The destination estimated covariance matrix. Output matrix will be size (windowRows*windowCols, windowRows*windowCols).
/// * windowRows: The number of rows in the window.
/// * windowCols: The number of cols in the window.
/// The window size parameters control the accuracy of the estimation.
/// The sliding window moves over the entire image from the top-left corner
/// to the bottom right corner. Each location of the window represents a sample.
/// If the window is the size of the image, then this gives the exact covariance matrix.
/// For all other cases, the sizes of the window will impact the number of samples
/// and the number of elements in the estimated covariance matrix.
#[inline]
pub fn covariance_estimation(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, window_rows: i32, window_cols: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_covarianceEstimation_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), window_rows, window_cols) }.into_result()?;
	Ok(ret)
}

/// Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
/// 
/// ## Parameters
/// * sigma_s: spatial standard deviation.
/// 
/// * sigma_r: color space standard deviation, it is similar to the sigma in the color space into
/// bilateralFilter.
/// 
/// * adjust_outliers: optional, specify perform outliers adjust operation or not, (Eq. 9) in the
/// original paper.
/// 
/// For more details about Adaptive Manifold Filter parameters, see the original article [Gastal12](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Gastal12) .
/// 
/// 
/// Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
/// color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
/// sigmas in bilateralFilter and dtFilter functions.
/// 
/// ## C++ default parameters
/// * adjust_outliers: false
#[inline]
pub fn create_am_filter(sigma_s: f64, sigma_r: f64, adjust_outliers: bool) -> Result<core::Ptr<dyn crate::ximgproc::AdaptiveManifoldFilter>> {
	let ret = unsafe { sys::cv_ximgproc_createAMFilter_double_double_bool(sigma_s, sigma_r, adjust_outliers) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::AdaptiveManifoldFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// create ContourFitting algorithm object
/// 
/// ## Parameters
/// * ctr: number of Fourier descriptors equal to number of contour points after resampling.
/// * fd: Contour defining second shape (Target).
/// 
/// ## C++ default parameters
/// * ctr: 1024
/// * fd: 16
#[inline]
pub fn create_contour_fitting(ctr: i32, fd: i32) -> Result<core::Ptr<crate::ximgproc::ContourFitting>> {
	let ret = unsafe { sys::cv_ximgproc_createContourFitting_int_int(ctr, fd) }.into_result()?;
	let ret = unsafe { core::Ptr::<crate::ximgproc::ContourFitting>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method, create instance of DTFilter and produce initialization routines.
/// 
/// ## Parameters
/// * guide: guided image (used to build transformed distance, which describes edge structure of
/// guided image).
/// 
/// * sigmaSpatial: ![inline formula](https://latex.codecogs.com/png.latex?%7B%5Csigma%7D%5FH) parameter in the original article, it's similar to the sigma in the
/// coordinate space into bilateralFilter.
/// 
/// * sigmaColor: ![inline formula](https://latex.codecogs.com/png.latex?%7B%5Csigma%7D%5Fr) parameter in the original article, it's similar to the sigma in the
/// color space into bilateralFilter.
/// 
/// * mode: one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
/// filtering 2D signals in the article.
/// 
/// * numIters: optional number of iterations used for filtering, 3 is quite enough.
/// 
/// For more details about Domain Transform filter parameters, see the original article [Gastal11](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Gastal11) and
/// [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
/// 
/// ## C++ default parameters
/// * mode: DTF_NC
/// * num_iters: 3
#[inline]
pub fn create_dt_filter(guide: &dyn core::ToInputArray, sigma_spatial: f64, sigma_color: f64, mode: i32, num_iters: i32) -> Result<core::Ptr<dyn crate::ximgproc::DTFilter>> {
	input_array_arg!(guide);
	let ret = unsafe { sys::cv_ximgproc_createDTFilter_const__InputArrayR_double_double_int_int(guide.as_raw__InputArray(), sigma_spatial, sigma_color, mode, num_iters) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::DTFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// More generic factory method, create instance of DisparityWLSFilter and execute basic
/// initialization routines. When using this method you will need to set-up the ROI, matchers and
/// other parameters by yourself.
/// 
/// ## Parameters
/// * use_confidence: filtering with confidence requires two disparity maps (for the left and right views) and is
/// approximately two times slower. However, quality is typically significantly better.
#[inline]
pub fn create_disparity_wls_filter_generic(use_confidence: bool) -> Result<core::Ptr<dyn crate::ximgproc::DisparityWLSFilter>> {
	let ret = unsafe { sys::cv_ximgproc_createDisparityWLSFilterGeneric_bool(use_confidence) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::DisparityWLSFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
/// filter parameters automatically based on the matcher instance. Currently supports only StereoBM and StereoSGBM.
/// 
/// ## Parameters
/// * matcher_left: stereo matcher instance that will be used with the filter
#[inline]
pub fn create_disparity_wls_filter(mut matcher_left: core::Ptr<dyn crate::calib3d::StereoMatcher>) -> Result<core::Ptr<dyn crate::ximgproc::DisparityWLSFilter>> {
	let ret = unsafe { sys::cv_ximgproc_createDisparityWLSFilter_Ptr_StereoMatcher_(matcher_left.as_raw_mut_PtrOfStereoMatcher()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::DisparityWLSFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method that creates an instance of the
/// EdgeAwareInterpolator.
#[inline]
pub fn create_edge_aware_interpolator() -> Result<core::Ptr<dyn crate::ximgproc::EdgeAwareInterpolator>> {
	let ret = unsafe { sys::cv_ximgproc_createEdgeAwareInterpolator() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::EdgeAwareInterpolator>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Creates a Edgeboxes
/// 
/// ## Parameters
/// * alpha: step size of sliding window search.
/// * beta: nms threshold for object proposals.
/// * eta: adaptation rate for nms threshold.
/// * minScore: min score of boxes to detect.
/// * maxBoxes: max number of boxes to detect.
/// * edgeMinMag: edge min magnitude. Increase to trade off accuracy for speed.
/// * edgeMergeThr: edge merge threshold. Increase to trade off accuracy for speed.
/// * clusterMinMag: cluster min magnitude. Increase to trade off accuracy for speed.
/// * maxAspectRatio: max aspect ratio of boxes.
/// * minBoxArea: minimum area of boxes.
/// * gamma: affinity sensitivity.
/// * kappa: scale sensitivity.
/// 
/// ## C++ default parameters
/// * alpha: 0.65f
/// * beta: 0.75f
/// * eta: 1
/// * min_score: 0.01f
/// * max_boxes: 10000
/// * edge_min_mag: 0.1f
/// * edge_merge_thr: 0.5f
/// * cluster_min_mag: 0.5f
/// * max_aspect_ratio: 3
/// * min_box_area: 1000
/// * gamma: 2
/// * kappa: 1.5f
#[inline]
pub fn create_edge_boxes(alpha: f32, beta: f32, eta: f32, min_score: f32, max_boxes: i32, edge_min_mag: f32, edge_merge_thr: f32, cluster_min_mag: f32, max_aspect_ratio: f32, min_box_area: f32, gamma: f32, kappa: f32) -> Result<core::Ptr<dyn crate::ximgproc::EdgeBoxes>> {
	let ret = unsafe { sys::cv_ximgproc_createEdgeBoxes_float_float_float_float_int_float_float_float_float_float_float_float(alpha, beta, eta, min_score, max_boxes, edge_min_mag, edge_merge_thr, cluster_min_mag, max_aspect_ratio, min_box_area, gamma, kappa) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::EdgeBoxes>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Creates a smart pointer to a EdgeDrawing object and initializes it
#[inline]
pub fn create_edge_drawing() -> Result<core::Ptr<dyn crate::ximgproc::EdgeDrawing>> {
	let ret = unsafe { sys::cv_ximgproc_createEdgeDrawing() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::EdgeDrawing>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
/// 
/// ## Parameters
/// * guide: image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
/// 
/// * sigma_spatial: parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
/// 
/// * sigma_luma: parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
/// 
/// * sigma_chroma: parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
/// 
/// * lambda: smoothness strength parameter for solver.
/// 
/// * num_iter: number of iterations used for solver, 25 is usually enough.
/// 
/// * max_tol: convergence tolerance used for solver.
/// 
/// For more details about the Fast Bilateral Solver parameters, see the original paper [BarronPoole2016](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BarronPoole2016).
/// 
/// ## C++ default parameters
/// * lambda: 128.0
/// * num_iter: 25
/// * max_tol: 1e-5
#[inline]
pub fn create_fast_bilateral_solver_filter(guide: &dyn core::ToInputArray, sigma_spatial: f64, sigma_luma: f64, sigma_chroma: f64, lambda: f64, num_iter: i32, max_tol: f64) -> Result<core::Ptr<dyn crate::ximgproc::FastBilateralSolverFilter>> {
	input_array_arg!(guide);
	let ret = unsafe { sys::cv_ximgproc_createFastBilateralSolverFilter_const__InputArrayR_double_double_double_double_int_double(guide.as_raw__InputArray(), sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::FastBilateralSolverFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
/// 
/// ## Parameters
/// * guide: image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
/// 
/// * lambda: parameter defining the amount of regularization
/// 
/// * sigma_color: parameter, that is similar to color space sigma in bilateralFilter.
/// 
/// * lambda_attenuation: internal parameter, defining how much lambda decreases after each iteration. Normally,
/// it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
/// 
/// * num_iter: number of iterations used for filtering, 3 is usually enough.
/// 
/// For more details about Fast Global Smoother parameters, see the original paper [Min2014](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Min2014). However, please note that
/// there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
/// expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
/// achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
/// propose to dynamically update the guide image after each iteration. To maximize the performance this feature
/// was not implemented here.
/// 
/// ## C++ default parameters
/// * lambda_attenuation: 0.25
/// * num_iter: 3
#[inline]
pub fn create_fast_global_smoother_filter(guide: &dyn core::ToInputArray, lambda: f64, sigma_color: f64, lambda_attenuation: f64, num_iter: i32) -> Result<core::Ptr<dyn crate::ximgproc::FastGlobalSmootherFilter>> {
	input_array_arg!(guide);
	let ret = unsafe { sys::cv_ximgproc_createFastGlobalSmootherFilter_const__InputArrayR_double_double_double_int(guide.as_raw__InputArray(), lambda, sigma_color, lambda_attenuation, num_iter) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::FastGlobalSmootherFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Creates a smart pointer to a FastLineDetector object and initializes it
/// 
/// ## Parameters
/// * length_threshold: Segment shorter than this will be discarded
/// * distance_threshold: A point placed from a hypothesis line
///                            segment farther than this will be regarded as an outlier
/// * canny_th1: First threshold for hysteresis procedure in Canny()
/// * canny_th2: Second threshold for hysteresis procedure in Canny()
/// * canny_aperture_size: Aperturesize for the sobel operator in Canny().
///                            If zero, Canny() is not applied and the input image is taken as an edge image.
/// * do_merge: If true, incremental merging of segments will be performed
/// 
/// ## C++ default parameters
/// * length_threshold: 10
/// * distance_threshold: 1.414213562f
/// * canny_th1: 50.0
/// * canny_th2: 50.0
/// * canny_aperture_size: 3
/// * do_merge: false
#[inline]
pub fn create_fast_line_detector(length_threshold: i32, distance_threshold: f32, canny_th1: f64, canny_th2: f64, canny_aperture_size: i32, do_merge: bool) -> Result<core::Ptr<dyn crate::ximgproc::FastLineDetector>> {
	let ret = unsafe { sys::cv_ximgproc_createFastLineDetector_int_float_double_double_int_bool(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size, do_merge) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::FastLineDetector>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method, create instance of GuidedFilter and produce initialization routines.
/// 
/// ## Parameters
/// * guide: guided image (or array of images) with up to 3 channels, if it have more then 3
/// channels then only first 3 channels will be used.
/// 
/// * radius: radius of Guided Filter.
/// 
/// * eps: regularization term of Guided Filter. ![inline formula](https://latex.codecogs.com/png.latex?%7Beps%7D%5E2) is similar to the sigma in the color
/// space into bilateralFilter.
/// 
/// For more details about Guided Filter parameters, see the original article [Kaiming10](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Kaiming10) .
#[inline]
pub fn create_guided_filter(guide: &dyn core::ToInputArray, radius: i32, eps: f64) -> Result<core::Ptr<dyn crate::ximgproc::GuidedFilter>> {
	input_array_arg!(guide);
	let ret = unsafe { sys::cv_ximgproc_createGuidedFilter_const__InputArrayR_int_double(guide.as_raw__InputArray(), radius, eps) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::GuidedFilter>::opencv_from_extern(ret) };
	Ok(ret)
}

///   creates a quaternion image.
/// 
/// ## Parameters
/// * img: Source 8-bit, 32-bit or 64-bit image, with 3-channel image.
/// * qimg: result CV_64FC4 a quaternion image( 4 chanels zero channel and B,G,R).
#[inline]
pub fn create_quaternion_image(img: &dyn core::ToInputArray, qimg: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(img);
	output_array_arg!(qimg);
	let ret = unsafe { sys::cv_ximgproc_createQuaternionImage_const__InputArrayR_const__OutputArrayR(img.as_raw__InputArray(), qimg.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

#[inline]
pub fn create_rf_feature_getter() -> Result<core::Ptr<dyn crate::ximgproc::RFFeatureGetter>> {
	let ret = unsafe { sys::cv_ximgproc_createRFFeatureGetter() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::RFFeatureGetter>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Factory method that creates an instance of the
/// RICInterpolator.
#[inline]
pub fn create_ric_interpolator() -> Result<core::Ptr<dyn crate::ximgproc::RICInterpolator>> {
	let ret = unsafe { sys::cv_ximgproc_createRICInterpolator() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::RICInterpolator>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Convenience method to set up the matcher for computing the right-view disparity map
/// that is required in case of filtering with confidence.
/// 
/// ## Parameters
/// * matcher_left: main stereo matcher instance that will be used with the filter
#[inline]
pub fn create_right_matcher(mut matcher_left: core::Ptr<dyn crate::calib3d::StereoMatcher>) -> Result<core::Ptr<dyn crate::calib3d::StereoMatcher>> {
	let ret = unsafe { sys::cv_ximgproc_createRightMatcher_Ptr_StereoMatcher_(matcher_left.as_raw_mut_PtrOfStereoMatcher()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::calib3d::StereoMatcher>::opencv_from_extern(ret) };
	Ok(ret)
}

/// !
/// * The only constructor
/// *
/// * \param model : name of the file where the model is stored
/// * \param howToGetFeatures : optional object inheriting from RFFeatureGetter.
/// *                           You need it only if you would like to train your
/// *                           own forest, pass NULL otherwise
/// 
/// ## C++ default parameters
/// * how_to_get_features: Ptr<RFFeatureGetter>()
#[inline]
pub fn create_structured_edge_detection(model: &str, how_to_get_features: core::Ptr<dyn crate::ximgproc::RFFeatureGetter>) -> Result<core::Ptr<dyn crate::ximgproc::StructuredEdgeDetection>> {
	extern_container_arg!(model);
	let ret = unsafe { sys::cv_ximgproc_createStructuredEdgeDetection_const_StringR_Ptr_const_RFFeatureGetter_(model.opencv_as_extern(), how_to_get_features.as_raw_PtrOfRFFeatureGetter()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::StructuredEdgeDetection>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Class implementing the LSC (Linear Spectral Clustering) superpixels
/// 
/// ## Parameters
/// * image: Image to segment
/// * region_size: Chooses an average superpixel size measured in pixels
/// * ratio: Chooses the enforcement of superpixel compactness factor of superpixel
/// 
/// The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
/// superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
/// computing iterations over the given image. An example of LSC is ilustrated in the following picture.
/// For enanched results it is recommended for color images to preprocess image with little gaussian blur
/// with a small 3 x 3 kernel and additional conversion into CieLAB color space.
/// 
/// ![image](https://docs.opencv.org/4.5.4/superpixels_lsc.png)
/// 
/// ## C++ default parameters
/// * region_size: 10
/// * ratio: 0.075f
#[inline]
pub fn create_superpixel_lsc(image: &dyn core::ToInputArray, region_size: i32, ratio: f32) -> Result<core::Ptr<dyn crate::ximgproc::SuperpixelLSC>> {
	input_array_arg!(image);
	let ret = unsafe { sys::cv_ximgproc_createSuperpixelLSC_const__InputArrayR_int_float(image.as_raw__InputArray(), region_size, ratio) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SuperpixelLSC>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Initializes a SuperpixelSEEDS object.
/// 
/// ## Parameters
/// * image_width: Image width.
/// * image_height: Image height.
/// * image_channels: Number of channels of the image.
/// * num_superpixels: Desired number of superpixels. Note that the actual number may be smaller
/// due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
/// get the actual number.
/// * num_levels: Number of block levels. The more levels, the more accurate is the segmentation,
/// but needs more memory and CPU time.
/// * prior: enable 3x3 shape smoothing term if \>0. A larger value leads to smoother shapes. prior
/// must be in the range [0, 5].
/// * histogram_bins: Number of histogram bins.
/// * double_step: If true, iterate each block level twice for higher accuracy.
/// 
/// The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
/// the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
/// superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
/// double_step.
/// 
/// The number of levels in num_levels defines the amount of block levels that the algorithm use in the
/// optimization. The initialization is a grid, in which the superpixels are equally distributed through
/// the width and the height of the image. The larger blocks correspond to the superpixel size, and the
/// levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
/// recursively until the smaller block level. An example of initialization of 4 block levels is
/// illustrated in the following figure.
/// 
/// ![image](https://docs.opencv.org/4.5.4/superpixels_blocks.png)
/// 
/// ## C++ default parameters
/// * prior: 2
/// * histogram_bins: 5
/// * double_step: false
#[inline]
pub fn create_superpixel_seeds(image_width: i32, image_height: i32, image_channels: i32, num_superpixels: i32, num_levels: i32, prior: i32, histogram_bins: i32, double_step: bool) -> Result<core::Ptr<dyn crate::ximgproc::SuperpixelSEEDS>> {
	let ret = unsafe { sys::cv_ximgproc_createSuperpixelSEEDS_int_int_int_int_int_int_int_bool(image_width, image_height, image_channels, num_superpixels, num_levels, prior, histogram_bins, double_step) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SuperpixelSEEDS>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Initialize a SuperpixelSLIC object
/// 
/// ## Parameters
/// * image: Image to segment
/// * algorithm: Chooses the algorithm variant to use:
/// SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
/// while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
/// * region_size: Chooses an average superpixel size measured in pixels
/// * ruler: Chooses the enforcement of superpixel smoothness factor of superpixel
/// 
/// The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
/// superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
/// computing iterations over the given image. For enanched results it is recommended for color images to
/// preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
/// CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
/// 
/// ![image](https://docs.opencv.org/4.5.4/superpixels_slic.png)
/// 
/// ## C++ default parameters
/// * algorithm: SLICO
/// * region_size: 10
/// * ruler: 10.0f
#[inline]
pub fn create_superpixel_slic(image: &dyn core::ToInputArray, algorithm: i32, region_size: i32, ruler: f32) -> Result<core::Ptr<dyn crate::ximgproc::SuperpixelSLIC>> {
	input_array_arg!(image);
	let ret = unsafe { sys::cv_ximgproc_createSuperpixelSLIC_const__InputArrayR_int_int_float(image.as_raw__InputArray(), algorithm, region_size, ruler) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SuperpixelSLIC>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
/// guided image then use DTFilter interface to avoid extra computations on initialization stage.
/// 
/// ## Parameters
/// * guide: guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
/// depth and up to 4 channels.
/// * src: filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
/// * dst: destination image
/// * sigmaSpatial: ![inline formula](https://latex.codecogs.com/png.latex?%7B%5Csigma%7D%5FH) parameter in the original article, it's similar to the sigma in the
/// coordinate space into bilateralFilter.
/// * sigmaColor: ![inline formula](https://latex.codecogs.com/png.latex?%7B%5Csigma%7D%5Fr) parameter in the original article, it's similar to the sigma in the
/// color space into bilateralFilter.
/// * mode: one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
/// filtering 2D signals in the article.
/// * numIters: optional number of iterations used for filtering, 3 is quite enough.
/// ## See also
/// bilateralFilter, guidedFilter, amFilter
/// 
/// ## C++ default parameters
/// * mode: DTF_NC
/// * num_iters: 3
#[inline]
pub fn dt_filter(guide: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sigma_spatial: f64, sigma_color: f64, mode: i32, num_iters: i32) -> Result<()> {
	input_array_arg!(guide);
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_dtFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_double_int_int(guide.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_spatial, sigma_color, mode, num_iters) }.into_result()?;
	Ok(ret)
}

/// Smoothes an image using the Edge-Preserving filter.
/// 
/// The function smoothes Gaussian noise as well as salt & pepper noise.
/// For more details about this implementation, please see
/// [ReiWoe18]  Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
/// 
/// ## Parameters
/// * src: Source 8-bit 3-channel image.
/// * dst: Destination image of the same size and type as src.
/// * d: Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.
/// * threshold: Threshold, which distinguishes between noise, outliers, and data.
#[inline]
pub fn edge_preserving_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d: i32, threshold: f64) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_edgePreservingFilter_const__InputArrayR_const__OutputArrayR_int_double(src.as_raw__InputArray(), dst.as_raw__OutputArray(), d, threshold) }.into_result()?;
	Ok(ret)
}

/// Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
/// guide then use FastBilateralSolverFilter interface to avoid extra computations.
/// 
/// ## Parameters
/// * guide: image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
/// 
/// * src: source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
/// 
/// * confidence: confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
/// 
/// * dst: destination image.
/// 
/// * sigma_spatial: parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
/// 
/// * sigma_luma: parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
/// 
/// * sigma_chroma: parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
/// 
/// * lambda: smoothness strength parameter for solver.
/// 
/// * num_iter: number of iterations used for solver, 25 is usually enough.
/// 
/// * max_tol: convergence tolerance used for solver.
/// 
/// For more details about the Fast Bilateral Solver parameters, see the original paper [BarronPoole2016](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BarronPoole2016).
/// 
/// 
/// Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
/// 
/// ## C++ default parameters
/// * sigma_spatial: 8
/// * sigma_luma: 8
/// * sigma_chroma: 8
/// * lambda: 128.0
/// * num_iter: 25
/// * max_tol: 1e-5
#[inline]
pub fn fast_bilateral_solver_filter(guide: &dyn core::ToInputArray, src: &dyn core::ToInputArray, confidence: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sigma_spatial: f64, sigma_luma: f64, sigma_chroma: f64, lambda: f64, num_iter: i32, max_tol: f64) -> Result<()> {
	input_array_arg!(guide);
	input_array_arg!(src);
	input_array_arg!(confidence);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_fastBilateralSolverFilter_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_double_double_double_int_double(guide.as_raw__InputArray(), src.as_raw__InputArray(), confidence.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol) }.into_result()?;
	Ok(ret)
}

/// Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
/// guide then use FastGlobalSmootherFilter interface to avoid extra computations.
/// 
/// ## Parameters
/// * guide: image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
/// 
/// * src: source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
/// 
/// * dst: destination image.
/// 
/// * lambda: parameter defining the amount of regularization
/// 
/// * sigma_color: parameter, that is similar to color space sigma in bilateralFilter.
/// 
/// * lambda_attenuation: internal parameter, defining how much lambda decreases after each iteration. Normally,
/// it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
/// 
/// * num_iter: number of iterations used for filtering, 3 is usually enough.
/// 
/// ## C++ default parameters
/// * lambda_attenuation: 0.25
/// * num_iter: 3
#[inline]
pub fn fast_global_smoother_filter(guide: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, lambda: f64, sigma_color: f64, lambda_attenuation: f64, num_iter: i32) -> Result<()> {
	input_array_arg!(guide);
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_fastGlobalSmootherFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_double_double_int(guide.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), lambda, sigma_color, lambda_attenuation, num_iter) }.into_result()?;
	Ok(ret)
}

///   Fourier descriptors for planed closed curves
/// 
/// For more details about this implementation, please see [PersoonFu1977](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_PersoonFu1977)
/// 
/// ## Parameters
/// * src: contour type vector<Point> , vector<Point2f>  or vector<Point2d>
/// * dst: Mat of type CV_64FC2 and nbElt rows A VERIFIER
/// * nbElt: number of rows in dst or getOptimalDFTSize rows if nbElt=-1
/// * nbFD: number of FD return in dst dst = [FD(1...nbFD/2) FD(nbFD/2-nbElt+1...:nbElt)]
/// 
/// ## C++ default parameters
/// * nb_elt: -1
/// * nb_fd: -1
#[inline]
pub fn fourier_descriptor(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, nb_elt: i32, nb_fd: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_fourierDescriptor_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), nb_elt, nb_fd) }.into_result()?;
	Ok(ret)
}

/// Function for creating a disparity map visualization (clamped CV_8U image)
/// 
/// ## Parameters
/// * src: input disparity map (CV_16S depth)
/// 
/// * dst: output visualization
/// 
/// * scale: disparity map will be multiplied by this value for visualization
/// 
/// ## C++ default parameters
/// * scale: 1.0
#[inline]
pub fn get_disparity_vis(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, scale: f64) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_getDisparityVis_const__InputArrayR_const__OutputArrayR_double(src.as_raw__InputArray(), dst.as_raw__OutputArray(), scale) }.into_result()?;
	Ok(ret)
}

/// Simple one-line Guided Filter call.
/// 
/// If you have multiple images to filter with the same guided image then use GuidedFilter interface to
/// avoid extra computations on initialization stage.
/// 
/// ## Parameters
/// * guide: guided image (or array of images) with up to 3 channels, if it have more then 3
/// channels then only first 3 channels will be used.
/// 
/// * src: filtering image with any numbers of channels.
/// 
/// * dst: output image.
/// 
/// * radius: radius of Guided Filter.
/// 
/// * eps: regularization term of Guided Filter. ![inline formula](https://latex.codecogs.com/png.latex?%7Beps%7D%5E2) is similar to the sigma in the color
/// space into bilateralFilter.
/// 
/// * dDepth: optional depth of the output image.
/// ## See also
/// bilateralFilter, dtFilter, amFilter
/// 
/// ## C++ default parameters
/// * d_depth: -1
#[inline]
pub fn guided_filter(guide: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, radius: i32, eps: f64, d_depth: i32) -> Result<()> {
	input_array_arg!(guide);
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_guidedFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_int(guide.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), radius, eps, d_depth) }.into_result()?;
	Ok(ret)
}

/// Applies the joint bilateral filter to an image.
/// 
/// ## Parameters
/// * joint: Joint 8-bit or floating-point, 1-channel or 3-channel image.
/// 
/// * src: Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
/// image.
/// 
/// * dst: Destination image of the same size and type as src .
/// 
/// * d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
/// it is computed from sigmaSpace .
/// 
/// * sigmaColor: Filter sigma in the color space. A larger value of the parameter means that
/// farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
/// larger areas of semi-equal color.
/// 
/// * sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that
/// farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
/// When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
/// proportional to sigmaSpace .
/// 
/// * borderType: 
/// 
/// 
/// Note: bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
/// ## See also
/// bilateralFilter, amFilter
/// 
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn joint_bilateral_filter(joint: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d: i32, sigma_color: f64, sigma_space: f64, border_type: i32) -> Result<()> {
	input_array_arg!(joint);
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_jointBilateralFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_double_int(joint.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), d, sigma_color, sigma_space, border_type) }.into_result()?;
	Ok(ret)
}

/// Global image smoothing via L0 gradient minimization.
/// 
/// ## Parameters
/// * src: source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
/// 
/// * dst: destination image.
/// 
/// * lambda: parameter defining the smooth term weight.
/// 
/// * kappa: parameter defining the increasing factor of the weight of the gradient data term.
/// 
/// For more details about L0 Smoother, see the original paper [xu2011image](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_xu2011image).
/// 
/// ## C++ default parameters
/// * lambda: 0.02
/// * kappa: 2.0
#[inline]
pub fn l0_smooth(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, lambda: f64, kappa: f64) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_l0Smooth_const__InputArrayR_const__OutputArrayR_double_double(src.as_raw__InputArray(), dst.as_raw__OutputArray(), lambda, kappa) }.into_result()?;
	Ok(ret)
}

/// Performs thresholding on input images using Niblack's technique or some of the
/// popular variations it inspired.
/// 
/// The function transforms a grayscale image to a binary image according to the formulae:
/// *   **THRESH_BINARY**
///    ![block formula](https://latex.codecogs.com/png.latex?dst%28x%2Cy%29%20%3D%20%20%5Cfork%7B%5Ctexttt%7BmaxValue%7D%7D%7Bif%20%5C%28src%28x%2Cy%29%20%3E%20T%28x%2Cy%29%5C%29%7D%7B0%7D%7Botherwise%7D)
/// *   **THRESH_BINARY_INV**
///    ![block formula](https://latex.codecogs.com/png.latex?dst%28x%2Cy%29%20%3D%20%20%5Cfork%7B0%7D%7Bif%20%5C%28src%28x%2Cy%29%20%3E%20T%28x%2Cy%29%5C%29%7D%7B%5Ctexttt%7BmaxValue%7D%7D%7Botherwise%7D)
/// where ![inline formula](https://latex.codecogs.com/png.latex?T%28x%2Cy%29) is a threshold calculated individually for each pixel.
/// 
/// The threshold value ![inline formula](https://latex.codecogs.com/png.latex?T%28x%2C%20y%29) is determined based on the binarization method chosen. For
/// classic Niblack, it is the mean minus ![inline formula](https://latex.codecogs.com/png.latex?%20k%20) times standard deviation of
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BblockSize%7D%20%5Ctimes%5Ctexttt%7BblockSize%7D) neighborhood of ![inline formula](https://latex.codecogs.com/png.latex?%28x%2C%20y%29).
/// 
/// The function can't process the image in-place.
/// 
/// ## Parameters
/// * _src: Source 8-bit single-channel image.
/// * _dst: Destination image of the same size and the same type as src.
/// * maxValue: Non-zero value assigned to the pixels for which the condition is satisfied,
/// used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
/// * type: Thresholding type, see cv::ThresholdTypes.
/// * blockSize: Size of a pixel neighborhood that is used to calculate a threshold value
/// for the pixel: 3, 5, 7, and so on.
/// * k: The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
/// normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
/// the mean.
/// * binarizationMethod: Binarization method to use. By default, Niblack's technique is used.
/// Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
/// * r: The user-adjustable parameter used by Sauvola's technique. This is the dynamic range
/// of standard deviation.
/// ## See also
/// threshold, adaptiveThreshold
/// 
/// ## C++ default parameters
/// * binarization_method: BINARIZATION_NIBLACK
/// * r: 128
#[inline]
pub fn ni_black_threshold(_src: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray, max_value: f64, typ: i32, block_size: i32, k: f64, binarization_method: i32, r: f64) -> Result<()> {
	input_array_arg!(_src);
	output_array_arg!(_dst);
	let ret = unsafe { sys::cv_ximgproc_niBlackThreshold_const__InputArrayR_const__OutputArrayR_double_int_int_double_int_double(_src.as_raw__InputArray(), _dst.as_raw__OutputArray(), max_value, typ, block_size, k, binarization_method, r) }.into_result()?;
	Ok(ret)
}

///   calculates conjugate of a quaternion image.
/// 
/// ## Parameters
/// * qimg: quaternion image.
/// * qcimg: conjugate of qimg
#[inline]
pub fn qconj(qimg: &dyn core::ToInputArray, qcimg: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(qimg);
	output_array_arg!(qcimg);
	let ret = unsafe { sys::cv_ximgproc_qconj_const__InputArrayR_const__OutputArrayR(qimg.as_raw__InputArray(), qcimg.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

///    Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.
/// 
/// ## Parameters
/// * img: quaternion image.
/// * qimg: quaternion image in dual space.
/// * flags: quaternion image in dual space. only DFT_INVERSE flags is supported
/// * sideLeft: true the hypercomplex exponential is to be multiplied on the left (false on the right ).
#[inline]
pub fn qdft(img: &dyn core::ToInputArray, qimg: &mut dyn core::ToOutputArray, flags: i32, side_left: bool) -> Result<()> {
	input_array_arg!(img);
	output_array_arg!(qimg);
	let ret = unsafe { sys::cv_ximgproc_qdft_const__InputArrayR_const__OutputArrayR_int_bool(img.as_raw__InputArray(), qimg.as_raw__OutputArray(), flags, side_left) }.into_result()?;
	Ok(ret)
}

///   Calculates the per-element quaternion product of two arrays
/// 
/// ## Parameters
/// * src1: quaternion image.
/// * src2: quaternion image.
/// * dst: product dst(I)=src1(I) . src2(I)
#[inline]
pub fn qmultiply(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_qmultiply_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

///   divides each element by its modulus.
/// 
/// ## Parameters
/// * qimg: quaternion image.
/// * qnimg: conjugate of qimg
#[inline]
pub fn qunitary(qimg: &dyn core::ToInputArray, qnimg: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(qimg);
	output_array_arg!(qnimg);
	let ret = unsafe { sys::cv_ximgproc_qunitary_const__InputArrayR_const__OutputArrayR(qimg.as_raw__InputArray(), qnimg.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Function for reading ground truth disparity maps. Supports basic Middlebury
/// and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.
/// 
/// ## Parameters
/// * src_path: path to the image, containing ground-truth disparity map
/// 
/// * dst: output disparity map, CV_16S depth
/// 
/// @result returns zero if successfully read the ground truth
#[inline]
pub fn read_gt(src_path: &str, dst: &mut dyn core::ToOutputArray) -> Result<i32> {
	extern_container_arg!(mut src_path);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_readGT_String_const__OutputArrayR(src_path.opencv_as_extern_mut(), dst.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

///   Creates a run-length encoded image from a vector of runs (column begin, column end, row)
/// 
/// ## Parameters
/// * runs: vector of runs
/// * res: result
/// * size: image size (to be used if an "on" boundary should be used in erosion, using the default
///                  means that the size is computed from the extension of the input)
/// 
/// ## C++ default parameters
/// * size: Size(0,0)
#[inline]
pub fn create_rle_image(runs: &core::Vector<core::Point3i>, res: &mut dyn core::ToOutputArray, size: core::Size) -> Result<()> {
	output_array_arg!(res);
	let ret = unsafe { sys::cv_ximgproc_rl_createRLEImage_const_vector_Point3i_R_const__OutputArrayR_Size(runs.as_raw_VectorOfPoint3i(), res.as_raw__OutputArray(), size.opencv_as_extern()) }.into_result()?;
	Ok(ret)
}

///   Dilates an run-length encoded binary image by using a specific structuring element.
/// 
/// 
/// ## Parameters
/// * rlSrc: input image
/// * rlDest: result
/// * rlKernel: kernel
/// * anchor: position of the anchor within the element; default value (0, 0)
///                      is usually the element center.
/// 
/// ## C++ default parameters
/// * anchor: Point(0,0)
#[inline]
pub fn dilate(rl_src: &dyn core::ToInputArray, rl_dest: &mut dyn core::ToOutputArray, rl_kernel: &dyn core::ToInputArray, anchor: core::Point) -> Result<()> {
	input_array_arg!(rl_src);
	output_array_arg!(rl_dest);
	input_array_arg!(rl_kernel);
	let ret = unsafe { sys::cv_ximgproc_rl_dilate_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Point(rl_src.as_raw__InputArray(), rl_dest.as_raw__OutputArray(), rl_kernel.as_raw__InputArray(), anchor.opencv_as_extern()) }.into_result()?;
	Ok(ret)
}

///   Erodes an run-length encoded binary image by using a specific structuring element.
/// 
/// 
/// ## Parameters
/// * rlSrc: input image
/// * rlDest: result
/// * rlKernel: kernel
/// * bBoundaryOn: indicates whether pixel outside the image boundary are assumed to be on
///          (True: works in the same way as the default of cv::erode, False: is a little faster)
/// * anchor: position of the anchor within the element; default value (0, 0)
///                      is usually the element center.
/// 
/// ## C++ default parameters
/// * b_boundary_on: true
/// * anchor: Point(0,0)
#[inline]
pub fn erode(rl_src: &dyn core::ToInputArray, rl_dest: &mut dyn core::ToOutputArray, rl_kernel: &dyn core::ToInputArray, b_boundary_on: bool, anchor: core::Point) -> Result<()> {
	input_array_arg!(rl_src);
	output_array_arg!(rl_dest);
	input_array_arg!(rl_kernel);
	let ret = unsafe { sys::cv_ximgproc_rl_erode_const__InputArrayR_const__OutputArrayR_const__InputArrayR_bool_Point(rl_src.as_raw__InputArray(), rl_dest.as_raw__OutputArray(), rl_kernel.as_raw__InputArray(), b_boundary_on, anchor.opencv_as_extern()) }.into_result()?;
	Ok(ret)
}

///   Returns a run length encoded structuring element of the specified size and shape.
/// 
/// 
/// ## Parameters
/// * shape: 	Element shape that can be one of cv::MorphShapes
/// * ksize: 	Size of the structuring element.
#[inline]
pub fn get_structuring_element(shape: i32, ksize: core::Size) -> Result<core::Mat> {
	let ret = unsafe { sys::cv_ximgproc_rl_getStructuringElement_int_Size(shape, ksize.opencv_as_extern()) }.into_result()?;
	let ret = unsafe { core::Mat::opencv_from_extern(ret) };
	Ok(ret)
}

///   Check whether a custom made structuring element can be used with run length morphological operations.
///          (It must consist of a continuous array of single runs per row)
/// 
/// ## Parameters
/// * rlStructuringElement: mask to be tested
#[inline]
pub fn is_rl_morphology_possible(rl_structuring_element: &dyn core::ToInputArray) -> Result<bool> {
	input_array_arg!(rl_structuring_element);
	let ret = unsafe { sys::cv_ximgproc_rl_isRLMorphologyPossible_const__InputArrayR(rl_structuring_element.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

///   Applies a morphological operation to a run-length encoded binary image.
/// 
/// 
/// ## Parameters
/// * rlSrc: input image
/// * rlDest: result
/// * op: all operations supported by cv::morphologyEx (except cv::MORPH_HITMISS)
/// * rlKernel: kernel
/// * bBoundaryOnForErosion: indicates whether pixel outside the image boundary are assumed
///          to be on for erosion operations (True: works in the same way as the default of cv::erode,
///          False: is a little faster)
/// * anchor: position of the anchor within the element; default value (0, 0) is usually the element center.
/// 
/// ## C++ default parameters
/// * b_boundary_on_for_erosion: true
/// * anchor: Point(0,0)
#[inline]
pub fn morphology_ex(rl_src: &dyn core::ToInputArray, rl_dest: &mut dyn core::ToOutputArray, op: i32, rl_kernel: &dyn core::ToInputArray, b_boundary_on_for_erosion: bool, anchor: core::Point) -> Result<()> {
	input_array_arg!(rl_src);
	output_array_arg!(rl_dest);
	input_array_arg!(rl_kernel);
	let ret = unsafe { sys::cv_ximgproc_rl_morphologyEx_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR_bool_Point(rl_src.as_raw__InputArray(), rl_dest.as_raw__OutputArray(), op, rl_kernel.as_raw__InputArray(), b_boundary_on_for_erosion, anchor.opencv_as_extern()) }.into_result()?;
	Ok(ret)
}

///   Paint run length encoded binary image into an image.
/// 
/// 
/// ## Parameters
/// * image: image to paint into (currently only single channel images).
/// * rlSrc: run length encoded image
/// * value: all foreground pixel of the binary image are set to this value
#[inline]
pub fn paint(image: &mut dyn core::ToInputOutputArray, rl_src: &dyn core::ToInputArray, value: core::Scalar) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(rl_src);
	let ret = unsafe { sys::cv_ximgproc_rl_paint_const__InputOutputArrayR_const__InputArrayR_const_ScalarR(image.as_raw__InputOutputArray(), rl_src.as_raw__InputArray(), &value) }.into_result()?;
	Ok(ret)
}

///   Applies a fixed-level threshold to each array element.
/// 
/// 
/// ## Parameters
/// * src: input array (single-channel).
/// * rlDest: resulting run length encoded image.
/// * thresh: threshold value.
/// * type: thresholding type (only cv::THRESH_BINARY and cv::THRESH_BINARY_INV are supported)
#[inline]
pub fn threshold(src: &dyn core::ToInputArray, rl_dest: &mut dyn core::ToOutputArray, thresh: f64, typ: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(rl_dest);
	let ret = unsafe { sys::cv_ximgproc_rl_threshold_const__InputArrayR_const__OutputArrayR_double_int(src.as_raw__InputArray(), rl_dest.as_raw__OutputArray(), thresh, typ) }.into_result()?;
	Ok(ret)
}

/// Applies the rolling guidance filter to an image.
/// 
/// For more details, please see [zhang2014rolling](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_zhang2014rolling)
/// 
/// ## Parameters
/// * src: Source 8-bit or floating-point, 1-channel or 3-channel image.
/// 
/// * dst: Destination image of the same size and type as src.
/// 
/// * d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
/// it is computed from sigmaSpace .
/// 
/// * sigmaColor: Filter sigma in the color space. A larger value of the parameter means that
/// farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
/// larger areas of semi-equal color.
/// 
/// * sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that
/// farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
/// When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
/// proportional to sigmaSpace .
/// 
/// * numOfIter: Number of iterations of joint edge-preserving filtering applied on the source image.
/// 
/// * borderType: 
/// 
/// 
/// Note:  rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
/// ## See also
/// jointBilateralFilter, bilateralFilter, amFilter
/// 
/// ## C++ default parameters
/// * d: -1
/// * sigma_color: 25
/// * sigma_space: 3
/// * num_of_iter: 4
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn rolling_guidance_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d: i32, sigma_color: f64, sigma_space: f64, num_of_iter: i32, border_type: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_rollingGuidanceFilter_const__InputArrayR_const__OutputArrayR_int_double_double_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), d, sigma_color, sigma_space, num_of_iter, border_type) }.into_result()?;
	Ok(ret)
}

/// Creates a graph based segmentor
/// ## Parameters
/// * sigma: The sigma parameter, used to smooth image
/// * k: The k parameter of the algorythm
/// * min_size: The minimum size of segments
/// 
/// ## C++ default parameters
/// * sigma: 0.5
/// * k: 300
/// * min_size: 100
#[inline]
pub fn create_graph_segmentation(sigma: f64, k: f32, min_size: i32) -> Result<core::Ptr<dyn crate::ximgproc::GraphSegmentation>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createGraphSegmentation_double_float_int(sigma, k, min_size) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::GraphSegmentation>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new SelectiveSearchSegmentation class.
#[inline]
pub fn create_selective_search_segmentation() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentation>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentation() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentation>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new color-based strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_color() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyColor>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyColor() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyColor>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new fill-based strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_fill() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyFill>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyFill() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyFill>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new multiple strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_multiple() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyMultiple() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new multiple strategy and set one subtrategy
/// ## Parameters
/// * s1: The first strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_multiple_1(mut s1: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>) -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyMultiple_Ptr_SelectiveSearchSegmentationStrategy_(s1.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new multiple strategy and set two subtrategies, with equal weights
/// ## Parameters
/// * s1: The first strategy
/// * s2: The second strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_multiple_2(mut s1: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s2: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>) -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyMultiple_Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy_(s1.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s2.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new multiple strategy and set three subtrategies, with equal weights
/// ## Parameters
/// * s1: The first strategy
/// * s2: The second strategy
/// * s3: The third strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_multiple_3(mut s1: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s2: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s3: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>) -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyMultiple_Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy_(s1.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s2.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s3.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new multiple strategy and set four subtrategies, with equal weights
/// ## Parameters
/// * s1: The first strategy
/// * s2: The second strategy
/// * s3: The third strategy
/// * s4: The forth strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_multiple_4(mut s1: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s2: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s3: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, mut s4: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>) -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyMultiple_Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy__Ptr_SelectiveSearchSegmentationStrategy_(s1.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s2.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s3.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), s4.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyMultiple>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new size-based strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_size() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategySize>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategySize() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategySize>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Create a new size-based strategy
#[inline]
pub fn create_selective_search_segmentation_strategy_texture() -> Result<core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyTexture>> {
	let ret = unsafe { sys::cv_ximgproc_segmentation_createSelectiveSearchSegmentationStrategyTexture() }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::ximgproc::SelectiveSearchSegmentationStrategyTexture>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Applies a binary blob thinning operation, to achieve a skeletization of the input image.
/// 
/// The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
/// 
/// ## Parameters
/// * src: Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
/// * dst: Destination image of the same size and the same type as src. The function can work in-place.
/// * thinningType: Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes
/// 
/// ## C++ default parameters
/// * thinning_type: THINNING_ZHANGSUEN
#[inline]
pub fn thinning(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, thinning_type: i32) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_thinning_const__InputArrayR_const__OutputArrayR_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), thinning_type) }.into_result()?;
	Ok(ret)
}

///   transform a contour
/// 
/// ## Parameters
/// * src: contour or Fourier Descriptors if fd is true
/// * t: transform Mat given by estimateTransformation
/// * dst: Mat of type CV_64FC2 and nbElt rows
/// * fdContour: true src are Fourier Descriptors. fdContour false src is a contour
/// 
/// ## C++ default parameters
/// * fd_contour: true
#[inline]
pub fn transform_fd(src: &dyn core::ToInputArray, t: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, fd_contour: bool) -> Result<()> {
	input_array_arg!(src);
	input_array_arg!(t);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_ximgproc_transformFD_const__InputArrayR_const__InputArrayR_const__OutputArrayR_bool(src.as_raw__InputArray(), t.as_raw__InputArray(), dst.as_raw__OutputArray(), fd_contour) }.into_result()?;
	Ok(ret)
}

///   Applies weighted median filter to an image.
/// 
/// For more details about this implementation, please see [zhang2014100](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_zhang2014100)+
/// 
/// ## Parameters
/// * joint: Joint 8-bit, 1-channel or 3-channel image.
/// * src: Source 8-bit or floating-point, 1-channel or 3-channel image.
/// * dst: Destination image.
/// * r: Radius of filtering kernel, should be a positive integer.
/// * sigma: Filter range standard deviation for the joint image.
/// * weightType: weightType The type of weight definition, see WMFWeightType
/// * mask: A 0-1 mask that has the same size with I. This mask is used to ignore the effect of some pixels. If the pixel value on mask is 0,
///                           the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
/// ## See also
/// medianBlur, jointBilateralFilter
/// 
/// ## C++ default parameters
/// * sigma: 25.5
/// * weight_type: WMF_EXP
/// * mask: noArray()
#[inline]
pub fn weighted_median_filter(joint: &dyn core::ToInputArray, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, r: i32, sigma: f64, weight_type: i32, mask: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(joint);
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_ximgproc_weightedMedianFilter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_int_const__InputArrayR(joint.as_raw__InputArray(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), r, sigma, weight_type, mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Interface for Adaptive Manifold Filter realizations.
/// 
/// For more details about this filter see [Gastal12](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Gastal12) and References_.
/// 
/// Below listed optional parameters which may be set up with Algorithm::set function.
/// *   member double sigma_s = 16.0
/// Spatial standard deviation.
/// *   member double sigma_r = 0.2
/// Color space standard deviation.
/// *   member int tree_height = -1
/// Height of the manifold tree (default = -1 : automatically computed).
/// *   member int num_pca_iterations = 1
/// Number of iterations to computed the eigenvector.
/// *   member bool adjust_outliers = false
/// Specify adjust outliers using Eq. 9 or not.
/// *   member bool use_RNG = true
/// Specify use random number generator to compute eigenvector or not.
pub trait AdaptiveManifoldFilterConst: core::AlgorithmTraitConst {
	fn as_raw_AdaptiveManifoldFilter(&self) -> *const c_void;

	/// ## See also
	/// setSigmaS
	#[inline]
	fn get_sigma_s(&self) -> Result<f64> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getSigmaS_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setSigmaR
	#[inline]
	fn get_sigma_r(&self) -> Result<f64> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getSigmaR_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setTreeHeight
	#[inline]
	fn get_tree_height(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getTreeHeight_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setPCAIterations
	#[inline]
	fn get_pca_iterations(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getPCAIterations_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setAdjustOutliers
	#[inline]
	fn get_adjust_outliers(&self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getAdjustOutliers_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setUseRNG
	#[inline]
	fn get_use_rng(&self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_getUseRNG_const(self.as_raw_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait AdaptiveManifoldFilter: core::AlgorithmTrait + crate::ximgproc::AdaptiveManifoldFilterConst {
	fn as_raw_mut_AdaptiveManifoldFilter(&mut self) -> *mut c_void;

	/// Apply high-dimensional filtering using adaptive manifolds.
	/// 
	/// ## Parameters
	/// * src: filtering image with any numbers of channels.
	/// 
	/// * dst: output image.
	/// 
	/// * joint: optional joint (also called as guided) image with any numbers of channels.
	/// 
	/// ## C++ default parameters
	/// * joint: noArray()
	#[inline]
	fn filter(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, joint: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(joint);
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_filter_const__InputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_AdaptiveManifoldFilter(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), joint.as_raw__InputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn collect_garbage(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_collectGarbage(self.as_raw_mut_AdaptiveManifoldFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setSigmaS getSigmaS
	#[inline]
	fn set_sigma_s(&mut self, val: f64) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setSigmaS_double(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setSigmaR getSigmaR
	#[inline]
	fn set_sigma_r(&mut self, val: f64) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setSigmaR_double(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setTreeHeight getTreeHeight
	#[inline]
	fn set_tree_height(&mut self, val: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setTreeHeight_int(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setPCAIterations getPCAIterations
	#[inline]
	fn set_pca_iterations(&mut self, val: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setPCAIterations_int(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setAdjustOutliers getAdjustOutliers
	#[inline]
	fn set_adjust_outliers(&mut self, val: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setAdjustOutliers_bool(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setUseRNG getUseRNG
	#[inline]
	fn set_use_rng(&mut self, val: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_setUseRNG_bool(self.as_raw_mut_AdaptiveManifoldFilter(), val) }.into_result()?;
		Ok(ret)
	}
	
}

impl dyn AdaptiveManifoldFilter + '_ {
	#[inline]
	pub fn create() -> Result<core::Ptr<dyn crate::ximgproc::AdaptiveManifoldFilter>> {
		let ret = unsafe { sys::cv_ximgproc_AdaptiveManifoldFilter_create() }.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::ximgproc::AdaptiveManifoldFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}
/// Class for ContourFitting algorithms.
/// ContourFitting match two contours ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fa%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fb%20) minimizing distance
/// ![block formula](https://latex.codecogs.com/png.latex?%20d%28z%5Fa%2Cz%5Fb%29%3D%5Csum%20%28a%5Fn%20%2D%20s%20%20b%5Fn%20e%5E%7Bj%28n%20%5Calpha%20%2B%5Cphi%20%29%7D%29%5E2%20) where ![inline formula](https://latex.codecogs.com/png.latex?%20a%5Fn%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20b%5Fn%20) are Fourier descriptors of ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fa%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fb%20) and s is a scaling factor and  ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cphi%20) is angle rotation and ![inline formula](https://latex.codecogs.com/png.latex?%20%5Calpha%20) is starting point factor adjustement
pub trait ContourFittingTraitConst: core::AlgorithmTraitConst {
	fn as_raw_ContourFitting(&self) -> *const c_void;

}

pub trait ContourFittingTrait: core::AlgorithmTrait + crate::ximgproc::ContourFittingTraitConst {
	fn as_raw_mut_ContourFitting(&mut self) -> *mut c_void;

	/// Fit two closed curves using fourier descriptors. More details in [PersoonFu1977](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_PersoonFu1977) and [BergerRaghunathan1998](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BergerRaghunathan1998)
	/// 
	/// ## Parameters
	/// * src: Contour defining first shape.
	/// * dst: Contour defining second shape (Target).
	/// * alphaPhiST: : ![inline formula](https://latex.codecogs.com/png.latex?%20%5Calpha%20)=alphaPhiST(0,0), ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cphi%20)=alphaPhiST(0,1) (in radian), s=alphaPhiST(0,2), Tx=alphaPhiST(0,3), Ty=alphaPhiST(0,4) rotation center
	/// * dist: distance between src and dst after matching.
	/// * fdContour: false then src and dst are contours and true src and dst are fourier descriptors.
	/// 
	/// ## C++ default parameters
	/// * dist: 0
	/// * fd_contour: false
	#[inline]
	fn estimate_transformation(&mut self, src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, alpha_phi_st: &mut dyn core::ToOutputArray, dist: &mut f64, fd_contour: bool) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(alpha_phi_st);
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_estimateTransformation_const__InputArrayR_const__InputArrayR_const__OutputArrayR_doubleX_bool(self.as_raw_mut_ContourFitting(), src.as_raw__InputArray(), dst.as_raw__InputArray(), alpha_phi_st.as_raw__OutputArray(), dist, fd_contour) }.into_result()?;
		Ok(ret)
	}
	
	/// Fit two closed curves using fourier descriptors. More details in [PersoonFu1977](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_PersoonFu1977) and [BergerRaghunathan1998](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BergerRaghunathan1998)
	/// 
	/// ## Parameters
	/// * src: Contour defining first shape.
	/// * dst: Contour defining second shape (Target).
	/// * alphaPhiST: : ![inline formula](https://latex.codecogs.com/png.latex?%20%5Calpha%20)=alphaPhiST(0,0), ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cphi%20)=alphaPhiST(0,1) (in radian), s=alphaPhiST(0,2), Tx=alphaPhiST(0,3), Ty=alphaPhiST(0,4) rotation center
	/// * dist: distance between src and dst after matching.
	/// * fdContour: false then src and dst are contours and true src and dst are fourier descriptors.
	/// 
	/// ## C++ default parameters
	/// * fd_contour: false
	#[inline]
	fn estimate_transformation_1(&mut self, src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, alpha_phi_st: &mut dyn core::ToOutputArray, dist: &mut f64, fd_contour: bool) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(alpha_phi_st);
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_estimateTransformation_const__InputArrayR_const__InputArrayR_const__OutputArrayR_doubleR_bool(self.as_raw_mut_ContourFitting(), src.as_raw__InputArray(), dst.as_raw__InputArray(), alpha_phi_st.as_raw__OutputArray(), dist, fd_contour) }.into_result()?;
		Ok(ret)
	}
	
	/// set number of Fourier descriptors used in estimateTransformation
	/// 
	/// ## Parameters
	/// * n: number of Fourier descriptors equal to number of contour points after resampling.
	#[inline]
	fn set_ctr_size(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_setCtrSize_int(self.as_raw_mut_ContourFitting(), n) }.into_result()?;
		Ok(ret)
	}
	
	/// set number of Fourier descriptors when estimateTransformation used vector<Point>
	/// 
	/// ## Parameters
	/// * n: number of fourier descriptors used for optimal curve matching.
	#[inline]
	fn set_fd_size(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_setFDSize_int(self.as_raw_mut_ContourFitting(), n) }.into_result()?;
		Ok(ret)
	}
	
	/// ## Returns
	/// number of fourier descriptors
	#[inline]
	fn get_ctr_size(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_getCtrSize(self.as_raw_mut_ContourFitting()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## Returns
	/// number of fourier descriptors used for optimal curve matching
	#[inline]
	fn get_fd_size(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_getFDSize(self.as_raw_mut_ContourFitting()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class for ContourFitting algorithms.
/// ContourFitting match two contours ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fa%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fb%20) minimizing distance
/// ![block formula](https://latex.codecogs.com/png.latex?%20d%28z%5Fa%2Cz%5Fb%29%3D%5Csum%20%28a%5Fn%20%2D%20s%20%20b%5Fn%20e%5E%7Bj%28n%20%5Calpha%20%2B%5Cphi%20%29%7D%29%5E2%20) where ![inline formula](https://latex.codecogs.com/png.latex?%20a%5Fn%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20b%5Fn%20) are Fourier descriptors of ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fa%20) and ![inline formula](https://latex.codecogs.com/png.latex?%20z%5Fb%20) and s is a scaling factor and  ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cphi%20) is angle rotation and ![inline formula](https://latex.codecogs.com/png.latex?%20%5Calpha%20) is starting point factor adjustement
pub struct ContourFitting {
	ptr: *mut c_void
}

opencv_type_boxed! { ContourFitting }

impl Drop for ContourFitting {
	fn drop(&mut self) {
		extern "C" { fn cv_ContourFitting_delete(instance: *mut c_void); }
		unsafe { cv_ContourFitting_delete(self.as_raw_mut_ContourFitting()) };
	}
}

unsafe impl Send for ContourFitting {}

impl core::AlgorithmTraitConst for ContourFitting {
	#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
}

impl core::AlgorithmTrait for ContourFitting {
	#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl crate::ximgproc::ContourFittingTraitConst for ContourFitting {
	#[inline] fn as_raw_ContourFitting(&self) -> *const c_void { self.as_raw() }
}

impl crate::ximgproc::ContourFittingTrait for ContourFitting {
	#[inline] fn as_raw_mut_ContourFitting(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl ContourFitting {
	/// Fit two closed curves using fourier descriptors. More details in [PersoonFu1977](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_PersoonFu1977) and [BergerRaghunathan1998](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BergerRaghunathan1998)
	/// 
	/// ## Parameters
	/// * ctr: number of Fourier descriptors equal to number of contour points after resampling.
	/// * fd: Contour defining second shape (Target).
	/// 
	/// ## C++ default parameters
	/// * ctr: 1024
	/// * fd: 16
	#[inline]
	pub fn new(ctr: i32, fd: i32) -> Result<crate::ximgproc::ContourFitting> {
		let ret = unsafe { sys::cv_ximgproc_ContourFitting_ContourFitting_int_int(ctr, fd) }.into_result()?;
		let ret = unsafe { crate::ximgproc::ContourFitting::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

boxed_cast_base! { ContourFitting, core::Algorithm, cv_ContourFitting_to_Algorithm }

/// Interface for realizations of Domain Transform filter.
/// 
/// For more details about this filter see [Gastal11](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Gastal11) .
pub trait DTFilterConst: core::AlgorithmTraitConst {
	fn as_raw_DTFilter(&self) -> *const c_void;

}

pub trait DTFilter: core::AlgorithmTrait + crate::ximgproc::DTFilterConst {
	fn as_raw_mut_DTFilter(&mut self) -> *mut c_void;

	/// Produce domain transform filtering operation on source image.
	/// 
	/// ## Parameters
	/// * src: filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
	/// 
	/// * dst: destination image.
	/// 
	/// * dDepth: optional depth of the output image. dDepth can be set to -1, which will be equivalent
	/// to src.depth().
	/// 
	/// ## C++ default parameters
	/// * d_depth: -1
	#[inline]
	fn filter(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d_depth: i32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_DTFilter_filter_const__InputArrayR_const__OutputArrayR_int(self.as_raw_mut_DTFilter(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), d_depth) }.into_result()?;
		Ok(ret)
	}
	
}

/// Main interface for all disparity map filters.
pub trait DisparityFilterConst: core::AlgorithmTraitConst {
	fn as_raw_DisparityFilter(&self) -> *const c_void;

}

pub trait DisparityFilter: core::AlgorithmTrait + crate::ximgproc::DisparityFilterConst {
	fn as_raw_mut_DisparityFilter(&mut self) -> *mut c_void;

	/// Apply filtering to the disparity map.
	/// 
	/// ## Parameters
	/// * disparity_map_left: disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity
	/// values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map
	/// can have any resolution, it will be automatically resized to fit left_view resolution.
	/// 
	/// * left_view: left view of the original stereo-pair to guide the filtering process, 8-bit single-channel
	/// or three-channel image.
	/// 
	/// * filtered_disparity_map: output disparity map.
	/// 
	/// * disparity_map_right: optional argument, some implementations might also use the disparity map
	/// of the right view to compute confidence maps, for instance.
	/// 
	/// * ROI: region of the disparity map to filter. Optional, usually it should be set automatically.
	/// 
	/// * right_view: optional argument, some implementations might also use the right view of the original
	/// stereo-pair.
	/// 
	/// ## C++ default parameters
	/// * disparity_map_right: Mat()
	/// * roi: Rect()
	/// * right_view: Mat()
	#[inline]
	fn filter(&mut self, disparity_map_left: &dyn core::ToInputArray, left_view: &dyn core::ToInputArray, filtered_disparity_map: &mut dyn core::ToOutputArray, disparity_map_right: &dyn core::ToInputArray, roi: core::Rect, right_view: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(disparity_map_left);
		input_array_arg!(left_view);
		output_array_arg!(filtered_disparity_map);
		input_array_arg!(disparity_map_right);
		input_array_arg!(right_view);
		let ret = unsafe { sys::cv_ximgproc_DisparityFilter_filter_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Rect_const__InputArrayR(self.as_raw_mut_DisparityFilter(), disparity_map_left.as_raw__InputArray(), left_view.as_raw__InputArray(), filtered_disparity_map.as_raw__OutputArray(), disparity_map_right.as_raw__InputArray(), roi.opencv_as_extern(), right_view.as_raw__InputArray()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Disparity map filter based on Weighted Least Squares filter (in form of Fast Global Smoother that
/// is a lot faster than traditional Weighted Least Squares filter implementations) and optional use of
/// left-right-consistency-based confidence to refine the results in half-occlusions and uniform areas.
pub trait DisparityWLSFilterConst: crate::ximgproc::DisparityFilterConst {
	fn as_raw_DisparityWLSFilter(&self) -> *const c_void;

}

pub trait DisparityWLSFilter: crate::ximgproc::DisparityFilter + crate::ximgproc::DisparityWLSFilterConst {
	fn as_raw_mut_DisparityWLSFilter(&mut self) -> *mut c_void;

	/// Lambda is a parameter defining the amount of regularization during filtering. Larger values force
	/// filtered disparity map edges to adhere more to source image edges. Typical value is 8000.
	#[inline]
	fn get_lambda(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getLambda(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// getLambda
	#[inline]
	fn set_lambda(&mut self, _lambda: f64) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_setLambda_double(self.as_raw_mut_DisparityWLSFilter(), _lambda) }.into_result()?;
		Ok(ret)
	}
	
	/// SigmaColor is a parameter defining how sensitive the filtering process is to source image edges.
	/// Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too
	/// sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0.
	#[inline]
	fn get_sigma_color(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getSigmaColor(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// getSigmaColor
	#[inline]
	fn set_sigma_color(&mut self, _sigma_color: f64) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_setSigmaColor_double(self.as_raw_mut_DisparityWLSFilter(), _sigma_color) }.into_result()?;
		Ok(ret)
	}
	
	/// LRCthresh is a threshold of disparity difference used in left-right-consistency check during
	/// confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough.
	#[inline]
	fn get_lr_cthresh(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getLRCthresh(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// getLRCthresh
	#[inline]
	fn set_lr_cthresh(&mut self, _lrc_thresh: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_setLRCthresh_int(self.as_raw_mut_DisparityWLSFilter(), _lrc_thresh) }.into_result()?;
		Ok(ret)
	}
	
	/// DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of
	/// low-confidence regions around depth discontinuities.
	#[inline]
	fn get_depth_discontinuity_radius(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getDepthDiscontinuityRadius(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// getDepthDiscontinuityRadius
	#[inline]
	fn set_depth_discontinuity_radius(&mut self, _disc_radius: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_setDepthDiscontinuityRadius_int(self.as_raw_mut_DisparityWLSFilter(), _disc_radius) }.into_result()?;
		Ok(ret)
	}
	
	/// Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image
	/// with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing
	/// correct disparity values with a high degree of confidence).
	#[inline]
	fn get_confidence_map(&mut self) -> Result<core::Mat> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getConfidenceMap(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Get the ROI used in the last filter call
	#[inline]
	fn get_roi(&mut self) -> Result<core::Rect> {
		let ret = unsafe { sys::cv_ximgproc_DisparityWLSFilter_getROI(self.as_raw_mut_DisparityWLSFilter()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Sparse match interpolation algorithm based on modified locally-weighted affine
/// estimator from [Revaud2015](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Revaud2015) and Fast Global Smoother as post-processing filter.
pub trait EdgeAwareInterpolatorConst: crate::ximgproc::SparseMatchInterpolatorConst {
	fn as_raw_EdgeAwareInterpolator(&self) -> *const c_void;

}

pub trait EdgeAwareInterpolator: crate::ximgproc::EdgeAwareInterpolatorConst + crate::ximgproc::SparseMatchInterpolator {
	fn as_raw_mut_EdgeAwareInterpolator(&mut self) -> *mut c_void;

	/// Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
	/// This implementation is based on a rather simple gradient-based edge map estimation.
	/// To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
	/// used in the original publication) that may lead to improved accuracies, the internal
	/// edge map estimation can be bypassed here.
	/// ## Parameters
	/// * _costMap: a type CV_32FC1 Mat is required.
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	#[inline]
	fn set_cost_map(&mut self, _cost_map: &core::Mat) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setCostMap_const_MatR(self.as_raw_mut_EdgeAwareInterpolator(), _cost_map.as_raw_Mat()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to tune the approximate size of the superpixel used for oversegmentation.
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	/// /
	/// K is a number of nearest-neighbor matches considered, when fitting a locally affine
	///   model. Usually it should be around 128. However, lower values would make the interpolation
	///   noticeably faster.
	#[inline]
	fn set_k(&mut self, _k: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setK_int(self.as_raw_mut_EdgeAwareInterpolator(), _k) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setK
	#[inline]
	fn get_k(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getK(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
	/// fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
	/// output flow.
	#[inline]
	fn set_sigma(&mut self, _sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setSigma_float(self.as_raw_mut_EdgeAwareInterpolator(), _sigma) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setSigma
	#[inline]
	fn get_sigma(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getSigma(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
	/// should be in the range of 0 to 1000.
	#[inline]
	fn set_lambda(&mut self, _lambda: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setLambda_float(self.as_raw_mut_EdgeAwareInterpolator(), _lambda) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setLambda
	#[inline]
	fn get_lambda(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getLambda(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by
	/// default.
	#[inline]
	fn set_use_post_processing(&mut self, _use_post_proc: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setUsePostProcessing_bool(self.as_raw_mut_EdgeAwareInterpolator(), _use_post_proc) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setUsePostProcessing
	#[inline]
	fn get_use_post_processing(&mut self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getUsePostProcessing(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the respective fastGlobalSmootherFilter() parameter.
	#[inline]
	fn set_fgs_lambda(&mut self, _lambda: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setFGSLambda_float(self.as_raw_mut_EdgeAwareInterpolator(), _lambda) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setFGSLambda
	#[inline]
	fn get_fgs_lambda(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getFGSLambda(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setFGSLambda
	#[inline]
	fn set_fgs_sigma(&mut self, _sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_setFGSSigma_float(self.as_raw_mut_EdgeAwareInterpolator(), _sigma) }.into_result()?;
		Ok(ret)
	}
	
	/// ## See also
	/// setFGSLambda
	#[inline]
	fn get_fgs_sigma(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeAwareInterpolator_getFGSSigma(self.as_raw_mut_EdgeAwareInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class implementing EdgeBoxes algorithm from [ZitnickECCV14edgeBoxes](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_ZitnickECCV14edgeBoxes) :
pub trait EdgeBoxesConst: core::AlgorithmTraitConst {
	fn as_raw_EdgeBoxes(&self) -> *const c_void;

	/// Returns the step size of sliding window search.
	#[inline]
	fn get_alpha(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getAlpha_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the nms threshold for object proposals.
	#[inline]
	fn get_beta(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getBeta_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns adaptation rate for nms threshold.
	#[inline]
	fn get_eta(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getEta_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the min score of boxes to detect.
	#[inline]
	fn get_min_score(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getMinScore_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the max number of boxes to detect.
	#[inline]
	fn get_max_boxes(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getMaxBoxes_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the edge min magnitude.
	#[inline]
	fn get_edge_min_mag(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getEdgeMinMag_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the edge merge threshold.
	#[inline]
	fn get_edge_merge_thr(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getEdgeMergeThr_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the cluster min magnitude.
	#[inline]
	fn get_cluster_min_mag(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getClusterMinMag_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the max aspect ratio of boxes.
	#[inline]
	fn get_max_aspect_ratio(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getMaxAspectRatio_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the minimum area of boxes.
	#[inline]
	fn get_min_box_area(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getMinBoxArea_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the affinity sensitivity.
	#[inline]
	fn get_gamma(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getGamma_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the scale sensitivity.
	#[inline]
	fn get_kappa(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getKappa_const(self.as_raw_EdgeBoxes()) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait EdgeBoxes: core::AlgorithmTrait + crate::ximgproc::EdgeBoxesConst {
	fn as_raw_mut_EdgeBoxes(&mut self) -> *mut c_void;

	/// Returns array containing proposal boxes.
	/// 
	/// ## Parameters
	/// * edge_map: edge image.
	/// * orientation_map: orientation map.
	/// * boxes: proposal boxes.
	/// * scores: of the proposal boxes, provided a vector of float types.
	/// 
	/// ## C++ default parameters
	/// * scores: noArray()
	#[inline]
	fn get_bounding_boxes(&mut self, edge_map: &dyn core::ToInputArray, orientation_map: &dyn core::ToInputArray, boxes: &mut core::Vector<core::Rect>, scores: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(edge_map);
		input_array_arg!(orientation_map);
		output_array_arg!(scores);
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_getBoundingBoxes_const__InputArrayR_const__InputArrayR_vector_Rect_R_const__OutputArrayR(self.as_raw_mut_EdgeBoxes(), edge_map.as_raw__InputArray(), orientation_map.as_raw__InputArray(), boxes.as_raw_mut_VectorOfRect(), scores.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the step size of sliding window search.
	#[inline]
	fn set_alpha(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setAlpha_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the nms threshold for object proposals.
	#[inline]
	fn set_beta(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setBeta_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the adaptation rate for nms threshold.
	#[inline]
	fn set_eta(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setEta_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the min score of boxes to detect.
	#[inline]
	fn set_min_score(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setMinScore_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets max number of boxes to detect.
	#[inline]
	fn set_max_boxes(&mut self, value: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setMaxBoxes_int(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the edge min magnitude.
	#[inline]
	fn set_edge_min_mag(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setEdgeMinMag_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the edge merge threshold.
	#[inline]
	fn set_edge_merge_thr(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setEdgeMergeThr_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the cluster min magnitude.
	#[inline]
	fn set_cluster_min_mag(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setClusterMinMag_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the max aspect ratio of boxes.
	#[inline]
	fn set_max_aspect_ratio(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setMaxAspectRatio_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the minimum area of boxes.
	#[inline]
	fn set_min_box_area(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setMinBoxArea_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the affinity sensitivity
	#[inline]
	fn set_gamma(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setGamma_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the scale sensitivity.
	#[inline]
	fn set_kappa(&mut self, value: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeBoxes_setKappa_float(self.as_raw_mut_EdgeBoxes(), value) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class implementing the ED (EdgeDrawing) [topal2012edge](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_topal2012edge), EDLines [akinlar2011edlines](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_akinlar2011edlines), EDPF [akinlar2012edpf](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_akinlar2012edpf) and EDCircles [akinlar2013edcircles](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_akinlar2013edcircles) algorithms
pub trait EdgeDrawingConst: core::AlgorithmTraitConst {
	fn as_raw_EdgeDrawing(&self) -> *const c_void;

	#[inline]
	fn params(&self) -> crate::ximgproc::EdgeDrawing_Params {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_getPropParams_const(self.as_raw_EdgeDrawing()) };
		ret
	}
	
}

pub trait EdgeDrawing: core::AlgorithmTrait + crate::ximgproc::EdgeDrawingConst {
	fn as_raw_mut_EdgeDrawing(&mut self) -> *mut c_void;

	#[inline]
	fn set_params(&mut self, val: crate::ximgproc::EdgeDrawing_Params) {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_setPropParams_Params(self.as_raw_mut_EdgeDrawing(), val.opencv_as_extern()) };
		ret
	}
	
	/// Detects edges and prepares them to detect lines and ellipses.
	/// 
	/// ## Parameters
	/// * src: input image
	#[inline]
	fn detect_edges(&mut self, src: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(src);
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_detectEdges_const__InputArrayR(self.as_raw_mut_EdgeDrawing(), src.as_raw__InputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_edge_image(&mut self, dst: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_getEdgeImage_const__OutputArrayR(self.as_raw_mut_EdgeDrawing(), dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_gradient_image(&mut self, dst: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_getGradientImage_const__OutputArrayR(self.as_raw_mut_EdgeDrawing(), dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_segments(&mut self) -> Result<core::Vector<core::Vector<core::Point>>> {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_getSegments(self.as_raw_mut_EdgeDrawing()) }.into_result()?;
		let ret = unsafe { core::Vector::<core::Vector<core::Point>>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Detects lines.
	/// 
	/// ## Parameters
	/// * lines: output Vec<4f> contains start point and end point of detected lines.
	/// 
	/// Note: you should call detectEdges() method before call this.
	#[inline]
	fn detect_lines(&mut self, lines: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(lines);
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_detectLines_const__OutputArrayR(self.as_raw_mut_EdgeDrawing(), lines.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Detects circles and ellipses.
	/// 
	/// ## Parameters
	/// * ellipses: output Vec<6d> contains center point and perimeter for circles.
	/// 
	/// Note: you should call detectEdges() method before call this.
	#[inline]
	fn detect_ellipses(&mut self, ellipses: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(ellipses);
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_detectEllipses_const__OutputArrayR(self.as_raw_mut_EdgeDrawing(), ellipses.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// sets parameters.
	/// 
	/// this function is meant to be used for parameter setting in other languages than c++.
	#[inline]
	fn set_params_1(&mut self, parameters: crate::ximgproc::EdgeDrawing_Params) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_setParams_const_ParamsR(self.as_raw_mut_EdgeDrawing(), &parameters) }.into_result()?;
		Ok(ret)
	}
	
}

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct EdgeDrawing_Params {
	/// Parameter Free mode will be activated when this value is true.
	pub p_fmode: bool,
	/// indicates the operator used for gradient calculation.The following operation flags are available(cv::ximgproc::EdgeDrawing::GradientOperator)
	pub edge_detection_operator: i32,
	/// threshold value used to create gradient image.
	pub gradient_threshold_value: i32,
	/// threshold value used to create gradient image.
	pub anchor_threshold_value: i32,
	pub scan_interval: i32,
	/// minimun connected pixels length processed to create an edge segment.
	pub min_path_length: i32,
	/// sigma value for internal GaussianBlur() function.
	pub sigma: f32,
	pub sum_flag: bool,
	/// when this value is true NFA (Number of False Alarms) algorithm will be used for line and ellipse validation.
	pub nfa_validation: bool,
	/// minimun line length to detect.
	pub min_line_length: i32,
	pub max_distance_between_two_lines: f64,
	pub line_fit_error_threshold: f64,
	pub max_error_threshold: f64,
}

opencv_type_simple! { crate::ximgproc::EdgeDrawing_Params }

impl EdgeDrawing_Params {
	#[inline]
	pub fn write(self, fs: &mut core::FileStorage) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_Params_write_const_FileStorageR(self.opencv_as_extern(), fs.as_raw_mut_FileStorage()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	pub fn default() -> Result<crate::ximgproc::EdgeDrawing_Params> {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_Params_Params() }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	pub fn read(self, fn_: &core::FileNode) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_EdgeDrawing_Params_read_const_FileNodeR(self.opencv_as_extern(), fn_.as_raw_FileNode()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Interface for implementations of Fast Bilateral Solver.
/// 
/// For more details about this solver see [BarronPoole2016](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_BarronPoole2016) .
pub trait FastBilateralSolverFilterConst: core::AlgorithmTraitConst {
	fn as_raw_FastBilateralSolverFilter(&self) -> *const c_void;

}

pub trait FastBilateralSolverFilter: core::AlgorithmTrait + crate::ximgproc::FastBilateralSolverFilterConst {
	fn as_raw_mut_FastBilateralSolverFilter(&mut self) -> *mut c_void;

	/// Apply smoothing operation to the source image.
	/// 
	/// ## Parameters
	/// * src: source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 3 channels.
	/// 
	/// * confidence: confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
	/// 
	/// * dst: destination image.
	/// 
	/// 
	/// Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
	#[inline]
	fn filter(&mut self, src: &dyn core::ToInputArray, confidence: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(confidence);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_FastBilateralSolverFilter_filter_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_FastBilateralSolverFilter(), src.as_raw__InputArray(), confidence.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Interface for implementations of Fast Global Smoother filter.
/// 
/// For more details about this filter see [Min2014](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Min2014) and [Farbman2008](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Farbman2008) .
pub trait FastGlobalSmootherFilterConst: core::AlgorithmTraitConst {
	fn as_raw_FastGlobalSmootherFilter(&self) -> *const c_void;

}

pub trait FastGlobalSmootherFilter: core::AlgorithmTrait + crate::ximgproc::FastGlobalSmootherFilterConst {
	fn as_raw_mut_FastGlobalSmootherFilter(&mut self) -> *mut c_void;

	/// Apply smoothing operation to the source image.
	/// 
	/// ## Parameters
	/// * src: source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
	/// 
	/// * dst: destination image.
	#[inline]
	fn filter(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_FastGlobalSmootherFilter_filter_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_FastGlobalSmootherFilter(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
}

/// @include samples/fld_lines.cpp
pub trait FastLineDetectorConst: core::AlgorithmTraitConst {
	fn as_raw_FastLineDetector(&self) -> *const c_void;

}

pub trait FastLineDetector: core::AlgorithmTrait + crate::ximgproc::FastLineDetectorConst {
	fn as_raw_mut_FastLineDetector(&mut self) -> *mut c_void;

	/// @example fld_lines.cpp
	///       An example using the FastLineDetector
	/// 
	/// Finds lines in the input image.
	///       This is the output of the default parameters of the algorithm on the above
	///       shown image.
	/// 
	///       ![image](https://docs.opencv.org/4.5.4/corridor_fld.jpg)
	/// 
	/// ## Parameters
	/// * image: A grayscale (CV_8UC1) input image. If only a roi needs to be
	///       selected, use: `fld_ptr-\>detect(image(roi), lines, ...);
	///       lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
	/// * lines: A vector of Vec4f elements specifying the beginning
	///       and ending point of a line.  Where Vec4f is (x1, y1, x2, y2), point
	///       1 is the start, point 2 - end. Returned lines are directed so that the
	///       brighter side is on their left.
	#[inline]
	fn detect(&mut self, image: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(image);
		output_array_arg!(lines);
		let ret = unsafe { sys::cv_ximgproc_FastLineDetector_detect_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_FastLineDetector(), image.as_raw__InputArray(), lines.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Draws the line segments on a given image.
	/// ## Parameters
	/// * image: The image, where the lines will be drawn. Should be bigger
	/// or equal to the image, where the lines were found.
	/// * lines: A vector of the lines that needed to be drawn.
	/// * draw_arrow: If true, arrow heads will be drawn.
	/// * linecolor: Line color.
	/// * linethickness: Line thickness.
	/// 
	/// ## C++ default parameters
	/// * draw_arrow: false
	/// * linecolor: Scalar(0,0,255)
	/// * linethickness: 1
	#[inline]
	fn draw_segments(&mut self, image: &mut dyn core::ToInputOutputArray, lines: &dyn core::ToInputArray, draw_arrow: bool, linecolor: core::Scalar, linethickness: i32) -> Result<()> {
		input_output_array_arg!(image);
		input_array_arg!(lines);
		let ret = unsafe { sys::cv_ximgproc_FastLineDetector_drawSegments_const__InputOutputArrayR_const__InputArrayR_bool_Scalar_int(self.as_raw_mut_FastLineDetector(), image.as_raw__InputOutputArray(), lines.as_raw__InputArray(), draw_arrow, linecolor.opencv_as_extern(), linethickness) }.into_result()?;
		Ok(ret)
	}
	
}

/// Interface for realizations of Guided Filter.
/// 
/// For more details about this filter see [Kaiming10](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Kaiming10) .
pub trait GuidedFilterConst: core::AlgorithmTraitConst {
	fn as_raw_GuidedFilter(&self) -> *const c_void;

}

pub trait GuidedFilter: core::AlgorithmTrait + crate::ximgproc::GuidedFilterConst {
	fn as_raw_mut_GuidedFilter(&mut self) -> *mut c_void;

	/// Apply Guided Filter to the filtering image.
	/// 
	/// ## Parameters
	/// * src: filtering image with any numbers of channels.
	/// 
	/// * dst: output image.
	/// 
	/// * dDepth: optional depth of the output image. dDepth can be set to -1, which will be equivalent
	/// to src.depth().
	/// 
	/// ## C++ default parameters
	/// * d_depth: -1
	#[inline]
	fn filter(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d_depth: i32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_GuidedFilter_filter_const__InputArrayR_const__OutputArrayR_int(self.as_raw_mut_GuidedFilter(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), d_depth) }.into_result()?;
		Ok(ret)
	}
	
}

/// !
/// Helper class for training part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013].
pub trait RFFeatureGetterConst: core::AlgorithmTraitConst {
	fn as_raw_RFFeatureGetter(&self) -> *const c_void;

	/// !
	/// * This functions extracts feature channels from src.
	/// * Than StructureEdgeDetection uses this feature space
	/// * to detect edges.
	/// *
	/// * \param src : source image to extract features
	/// * \param features : output n-channel floating point feature matrix.
	/// *
	/// * \param gnrmRad : __rf.options.gradientNormalizationRadius
	/// * \param gsmthRad : __rf.options.gradientSmoothingRadius
	/// * \param shrink : __rf.options.shrinkNumber
	/// * \param outNum : __rf.options.numberOfOutputChannels
	/// * \param gradNum : __rf.options.numberOfGradientOrientations
	#[inline]
	fn get_features(&self, src: &core::Mat, features: &mut core::Mat, gnrm_rad: i32, gsmth_rad: i32, shrink: i32, out_num: i32, grad_num: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RFFeatureGetter_getFeatures_const_const_MatR_MatR_const_int_const_int_const_int_const_int_const_int(self.as_raw_RFFeatureGetter(), src.as_raw_Mat(), features.as_raw_mut_Mat(), gnrm_rad, gsmth_rad, shrink, out_num, grad_num) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait RFFeatureGetter: core::AlgorithmTrait + crate::ximgproc::RFFeatureGetterConst {
	fn as_raw_mut_RFFeatureGetter(&mut self) -> *mut c_void;

}

/// Sparse match interpolation algorithm based on modified piecewise locally-weighted affine
/// estimator called Robust Interpolation method of Correspondences or RIC from [Hu2017](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Hu2017) and Variational
/// and Fast Global Smoother as post-processing filter. The RICInterpolator is a extension of the EdgeAwareInterpolator.
/// Main concept of this extension is an piece-wise affine model based on over-segmentation via SLIC superpixel estimation.
/// The method contains an efficient propagation mechanism to estimate among the pieces-wise models.
pub trait RICInterpolatorConst: crate::ximgproc::SparseMatchInterpolatorConst {
	fn as_raw_RICInterpolator(&self) -> *const c_void;

	/// K is a number of nearest-neighbor matches considered, when fitting a locally affine
	/// model for a superpixel segment. However, lower values would make the interpolation
	/// noticeably faster. The original implementation of [Hu2017](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Hu2017) uses 32.
	///      *  see also: setK
	#[inline]
	fn get_k(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getK_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
	/// ## See also
	/// setCostMap
	///      *  setSuperpixelSize
	#[inline]
	fn get_superpixel_size(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getSuperpixelSize_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
	/// model.
	///      *  see also: setSuperpixelNNCnt
	#[inline]
	fn get_superpixel_nn_cnt(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getSuperpixelNNCnt_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	///      *  setSuperpixelRuler
	#[inline]
	fn get_superpixel_ruler(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getSuperpixelRuler_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose superpixel algorithm variant to use:
	/// - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
	/// - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
	/// - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	///      *  setSuperpixelMode
	#[inline]
	fn get_superpixel_mode(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getSuperpixelMode_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
	/// ## See also
	/// setAlpha
	#[inline]
	fn get_alpha(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getAlpha_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter defining the number of iterations for piece-wise affine model estimation.
	/// ## See also
	/// setModelIter
	#[inline]
	fn get_model_iter(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getModelIter_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose wether additional refinement of the piece-wise affine models is employed.
	/// ## See also
	/// setRefineModels
	#[inline]
	fn get_refine_models(&self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getRefineModels_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
	/// If the prediction exceeds the treshold the translational model will be applied instead.
	///      *  see also: setMaxFlow
	#[inline]
	fn get_max_flow(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getMaxFlow_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose wether the VariationalRefinement post-processing  is employed.
	/// ## See also
	/// setUseVariationalRefinement
	#[inline]
	fn get_use_variational_refinement(&self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getUseVariationalRefinement_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets whether the fastGlobalSmootherFilter() post-processing is employed.
	/// ## See also
	/// setUseGlobalSmootherFilter
	#[inline]
	fn get_use_global_smoother_filter(&self) -> Result<bool> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getUseGlobalSmootherFilter_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the respective fastGlobalSmootherFilter() parameter.
	/// ## See also
	/// setFGSLambda
	#[inline]
	fn get_fgs_lambda(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getFGSLambda_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the respective fastGlobalSmootherFilter() parameter.
	/// ## See also
	/// setFGSSigma
	#[inline]
	fn get_fgs_sigma(&self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_getFGSSigma_const(self.as_raw_RICInterpolator()) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait RICInterpolator: crate::ximgproc::RICInterpolatorConst + crate::ximgproc::SparseMatchInterpolator {
	fn as_raw_mut_RICInterpolator(&mut self) -> *mut c_void;

	/// K is a number of nearest-neighbor matches considered, when fitting a locally affine
	/// model for a superpixel segment. However, lower values would make the interpolation
	/// noticeably faster. The original implementation of [Hu2017](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Hu2017) uses 32.
	/// 
	/// ## C++ default parameters
	/// * k: 32
	#[inline]
	fn set_k(&mut self, k: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setK_int(self.as_raw_mut_RICInterpolator(), k) }.into_result()?;
		Ok(ret)
	}
	
	/// Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
	/// This implementation is based on a rather simple gradient-based edge map estimation.
	/// To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
	/// used in the original publication) that may lead to improved accuracies, the internal
	/// edge map estimation can be bypassed here.
	/// ## Parameters
	/// * costMap: a type CV_32FC1 Mat is required.
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	#[inline]
	fn set_cost_map(&mut self, cost_map: &core::Mat) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setCostMap_const_MatR(self.as_raw_mut_RICInterpolator(), cost_map.as_raw_Mat()) }.into_result()?;
		Ok(ret)
	}
	
	/// Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
	/// ## See also
	/// setCostMap
	/// 
	/// ## C++ default parameters
	/// * sp_size: 15
	#[inline]
	fn set_superpixel_size(&mut self, sp_size: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setSuperpixelSize_int(self.as_raw_mut_RICInterpolator(), sp_size) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
	/// model.
	/// 
	/// ## C++ default parameters
	/// * sp_nn: 150
	#[inline]
	fn set_superpixel_nn_cnt(&mut self, sp_nn: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setSuperpixelNNCnt_int(self.as_raw_mut_RICInterpolator(), sp_nn) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	/// 
	/// ## C++ default parameters
	/// * ruler: 15.f
	#[inline]
	fn set_superpixel_ruler(&mut self, ruler: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setSuperpixelRuler_float(self.as_raw_mut_RICInterpolator(), ruler) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose superpixel algorithm variant to use:
	/// - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
	/// - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
	/// - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
	/// ## See also
	/// cv::ximgproc::createSuperpixelSLIC
	/// 
	/// ## C++ default parameters
	/// * mode: 100
	#[inline]
	fn set_superpixel_mode(&mut self, mode: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setSuperpixelMode_int(self.as_raw_mut_RICInterpolator(), mode) }.into_result()?;
		Ok(ret)
	}
	
	/// Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
	/// 
	/// ## C++ default parameters
	/// * alpha: 0.7f
	#[inline]
	fn set_alpha(&mut self, alpha: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setAlpha_float(self.as_raw_mut_RICInterpolator(), alpha) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter defining the number of iterations for piece-wise affine model estimation.
	/// 
	/// ## C++ default parameters
	/// * model_iter: 4
	#[inline]
	fn set_model_iter(&mut self, model_iter: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setModelIter_int(self.as_raw_mut_RICInterpolator(), model_iter) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose wether additional refinement of the piece-wise affine models is employed.
	/// 
	/// ## C++ default parameters
	/// * refine_modles: true
	#[inline]
	fn set_refine_models(&mut self, refine_modles: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setRefineModels_bool(self.as_raw_mut_RICInterpolator(), refine_modles) }.into_result()?;
		Ok(ret)
	}
	
	/// MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
	/// If the prediction exceeds the treshold the translational model will be applied instead.
	/// 
	/// ## C++ default parameters
	/// * max_flow: 250.f
	#[inline]
	fn set_max_flow(&mut self, max_flow: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setMaxFlow_float(self.as_raw_mut_RICInterpolator(), max_flow) }.into_result()?;
		Ok(ret)
	}
	
	/// Parameter to choose wether the VariationalRefinement post-processing  is employed.
	/// 
	/// ## C++ default parameters
	/// * use_variational_refinement: false
	#[inline]
	fn set_use_variational_refinement(&mut self, use_variational_refinement: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setUseVariationalRefinement_bool(self.as_raw_mut_RICInterpolator(), use_variational_refinement) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets whether the fastGlobalSmootherFilter() post-processing is employed.
	/// 
	/// ## C++ default parameters
	/// * use_fgs: true
	#[inline]
	fn set_use_global_smoother_filter(&mut self, use_fgs: bool) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setUseGlobalSmootherFilter_bool(self.as_raw_mut_RICInterpolator(), use_fgs) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the respective fastGlobalSmootherFilter() parameter.
	/// 
	/// ## C++ default parameters
	/// * lambda: 500.f
	#[inline]
	fn set_fgs_lambda(&mut self, lambda: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setFGSLambda_float(self.as_raw_mut_RICInterpolator(), lambda) }.into_result()?;
		Ok(ret)
	}
	
	/// Sets the respective fastGlobalSmootherFilter() parameter.
	/// 
	/// ## C++ default parameters
	/// * sigma: 1.5f
	#[inline]
	fn set_fgs_sigma(&mut self, sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_RICInterpolator_setFGSSigma_float(self.as_raw_mut_RICInterpolator(), sigma) }.into_result()?;
		Ok(ret)
	}
	
}

///  Applies Ridge Detection Filter to an input image.
/// Implements Ridge detection similar to the one in [Mathematica](http://reference.wolfram.com/language/ref/RidgeFilter.html)
/// using the eigen values from the Hessian Matrix of the input image using Sobel Derivatives.
/// Additional refinement can be done using Skeletonization and Binarization. Adapted from [segleafvein](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_segleafvein) and [M_RF](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_M_RF)
pub trait RidgeDetectionFilterConst: core::AlgorithmTraitConst {
	fn as_raw_RidgeDetectionFilter(&self) -> *const c_void;

}

pub trait RidgeDetectionFilter: core::AlgorithmTrait + crate::ximgproc::RidgeDetectionFilterConst {
	fn as_raw_mut_RidgeDetectionFilter(&mut self) -> *mut c_void;

	/// Apply Ridge detection filter on input image.
	/// ## Parameters
	/// * _img: InputArray as supported by Sobel. img can be 1-Channel or 3-Channels.
	/// * out: OutputAray of structure as RidgeDetectionFilter::ddepth. Output image with ridges.
	#[inline]
	fn get_ridge_filtered_image(&mut self, _img: &dyn core::ToInputArray, out: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(_img);
		output_array_arg!(out);
		let ret = unsafe { sys::cv_ximgproc_RidgeDetectionFilter_getRidgeFilteredImage_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_RidgeDetectionFilter(), _img.as_raw__InputArray(), out.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
}

impl dyn RidgeDetectionFilter + '_ {
	/// Create pointer to the Ridge detection filter.
	/// ## Parameters
	/// * ddepth: Specifies output image depth. Defualt is CV_32FC1
	/// * dx: Order of derivative x, default is 1
	/// * dy: Order of derivative y, default is 1
	/// * ksize: Sobel kernel size , default is 3
	/// * out_dtype: Converted format for output, default is CV_8UC1
	/// * scale: Optional scale value for derivative values, default is 1
	/// * delta: Optional bias added to output, default is 0
	/// * borderType: Pixel extrapolation method, default is BORDER_DEFAULT
	/// ## See also
	/// Sobel, threshold, getStructuringElement, morphologyEx.( for additional refinement)
	/// 
	/// ## C++ default parameters
	/// * ddepth: CV_32FC1
	/// * dx: 1
	/// * dy: 1
	/// * ksize: 3
	/// * out_dtype: CV_8UC1
	/// * scale: 1
	/// * delta: 0
	/// * border_type: BORDER_DEFAULT
	#[inline]
	pub fn create(ddepth: i32, dx: i32, dy: i32, ksize: i32, out_dtype: i32, scale: f64, delta: f64, border_type: i32) -> Result<core::Ptr<dyn crate::ximgproc::RidgeDetectionFilter>> {
		let ret = unsafe { sys::cv_ximgproc_RidgeDetectionFilter_create_int_int_int_int_int_double_double_int(ddepth, dx, dy, ksize, out_dtype, scale, delta, border_type) }.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::ximgproc::RidgeDetectionFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}
/// Main interface for all filters, that take sparse matches as an
/// input and produce a dense per-pixel matching (optical flow) as an output.
pub trait SparseMatchInterpolatorConst: core::AlgorithmTraitConst {
	fn as_raw_SparseMatchInterpolator(&self) -> *const c_void;

}

pub trait SparseMatchInterpolator: core::AlgorithmTrait + crate::ximgproc::SparseMatchInterpolatorConst {
	fn as_raw_mut_SparseMatchInterpolator(&mut self) -> *mut c_void;

	/// Interpolate input sparse matches.
	/// 
	/// ## Parameters
	/// * from_image: first of the two matched images, 8-bit single-channel or three-channel.
	/// 
	/// * from_points: points of the from_image for which there are correspondences in the
	/// to_image (Point2f vector or Mat of depth CV_32F)
	/// 
	/// * to_image: second of the two matched images, 8-bit single-channel or three-channel.
	/// 
	/// * to_points: points in the to_image corresponding to from_points
	/// (Point2f vector or Mat of depth CV_32F)
	/// 
	/// * dense_flow: output dense matching (two-channel CV_32F image)
	#[inline]
	fn interpolate(&mut self, from_image: &dyn core::ToInputArray, from_points: &dyn core::ToInputArray, to_image: &dyn core::ToInputArray, to_points: &dyn core::ToInputArray, dense_flow: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(from_image);
		input_array_arg!(from_points);
		input_array_arg!(to_image);
		input_array_arg!(to_points);
		output_array_arg!(dense_flow);
		let ret = unsafe { sys::cv_ximgproc_SparseMatchInterpolator_interpolate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_SparseMatchInterpolator(), from_image.as_raw__InputArray(), from_points.as_raw__InputArray(), to_image.as_raw__InputArray(), to_points.as_raw__InputArray(), dense_flow.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class implementing edge detection algorithm from [Dollar2013](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Dollar2013) :
pub trait StructuredEdgeDetectionConst: core::AlgorithmTraitConst {
	fn as_raw_StructuredEdgeDetection(&self) -> *const c_void;

	/// The function detects edges in src and draw them to dst.
	/// 
	/// The algorithm underlies this function is much more robust to texture presence, than common
	/// approaches, e.g. Sobel
	/// ## Parameters
	/// * _src: source image (RGB, float, in [0;1]) to detect edges
	/// * _dst: destination image (grayscale, float, in [0;1]) where edges are drawn
	/// ## See also
	/// Sobel, Canny
	#[inline]
	fn detect_edges(&self, _src: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(_src);
		output_array_arg!(_dst);
		let ret = unsafe { sys::cv_ximgproc_StructuredEdgeDetection_detectEdges_const_const__InputArrayR_const__OutputArrayR(self.as_raw_StructuredEdgeDetection(), _src.as_raw__InputArray(), _dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// The function computes orientation from edge image.
	/// 
	/// ## Parameters
	/// * _src: edge image.
	/// * _dst: orientation image.
	#[inline]
	fn compute_orientation(&self, _src: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(_src);
		output_array_arg!(_dst);
		let ret = unsafe { sys::cv_ximgproc_StructuredEdgeDetection_computeOrientation_const_const__InputArrayR_const__OutputArrayR(self.as_raw_StructuredEdgeDetection(), _src.as_raw__InputArray(), _dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.
	/// 
	/// ## Parameters
	/// * edge_image: edge image from detectEdges function.
	/// * orientation_image: orientation image from computeOrientation function.
	/// * _dst: suppressed image (grayscale, float, in [0;1])
	/// * r: radius for NMS suppression.
	/// * s: radius for boundary suppression.
	/// * m: multiplier for conservative suppression.
	/// * isParallel: enables/disables parallel computing.
	/// 
	/// ## C++ default parameters
	/// * r: 2
	/// * s: 0
	/// * m: 1
	/// * is_parallel: true
	#[inline]
	fn edges_nms(&self, edge_image: &dyn core::ToInputArray, orientation_image: &dyn core::ToInputArray, _dst: &mut dyn core::ToOutputArray, r: i32, s: i32, m: f32, is_parallel: bool) -> Result<()> {
		input_array_arg!(edge_image);
		input_array_arg!(orientation_image);
		output_array_arg!(_dst);
		let ret = unsafe { sys::cv_ximgproc_StructuredEdgeDetection_edgesNms_const_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_int_float_bool(self.as_raw_StructuredEdgeDetection(), edge_image.as_raw__InputArray(), orientation_image.as_raw__InputArray(), _dst.as_raw__OutputArray(), r, s, m, is_parallel) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait StructuredEdgeDetection: core::AlgorithmTrait + crate::ximgproc::StructuredEdgeDetectionConst {
	fn as_raw_mut_StructuredEdgeDetection(&mut self) -> *mut c_void;

}

/// Class implementing the LSC (Linear Spectral Clustering) superpixels
/// algorithm described in [LiCVPR2015LSC](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_LiCVPR2015LSC).
/// 
/// LSC (Linear Spectral Clustering) produces compact and uniform superpixels with low
/// computational costs. Basically, a normalized cuts formulation of the superpixel
/// segmentation is adopted based on a similarity metric that measures the color
/// similarity and space proximity between image pixels. LSC is of linear computational
/// complexity and high memory efficiency and is able to preserve global properties of images
pub trait SuperpixelLSCConst: core::AlgorithmTraitConst {
	fn as_raw_SuperpixelLSC(&self) -> *const c_void;

	/// Calculates the actual amount of superpixels on a given segmentation computed
	/// and stored in SuperpixelLSC object.
	#[inline]
	fn get_number_of_superpixels(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelLSC_getNumberOfSuperpixels_const(self.as_raw_SuperpixelLSC()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the segmentation labeling of the image.
	/// 
	/// Each label represents a superpixel, and each pixel is assigned to one superpixel label.
	/// 
	/// ## Parameters
	/// * labels_out: Return: A CV_32SC1 integer array containing the labels of the superpixel
	/// segmentation. The labels are in the range [0, getNumberOfSuperpixels()].
	/// 
	/// The function returns an image with the labels of the superpixel segmentation. The labels are in
	/// the range [0, getNumberOfSuperpixels()].
	#[inline]
	fn get_labels(&self, labels_out: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(labels_out);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelLSC_getLabels_const_const__OutputArrayR(self.as_raw_SuperpixelLSC(), labels_out.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the mask of the superpixel segmentation stored in SuperpixelLSC object.
	/// 
	/// ## Parameters
	/// * image: Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
	/// and 0 otherwise.
	/// 
	/// * thick_line: If false, the border is only one pixel wide, otherwise all pixels at the border
	/// are masked.
	/// 
	/// The function return the boundaries of the superpixel segmentation.
	/// 
	/// ## C++ default parameters
	/// * thick_line: true
	#[inline]
	fn get_label_contour_mask(&self, image: &mut dyn core::ToOutputArray, thick_line: bool) -> Result<()> {
		output_array_arg!(image);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelLSC_getLabelContourMask_const_const__OutputArrayR_bool(self.as_raw_SuperpixelLSC(), image.as_raw__OutputArray(), thick_line) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait SuperpixelLSC: core::AlgorithmTrait + crate::ximgproc::SuperpixelLSCConst {
	fn as_raw_mut_SuperpixelLSC(&mut self) -> *mut c_void;

	/// Calculates the superpixel segmentation on a given image with the initialized
	/// parameters in the SuperpixelLSC object.
	/// 
	/// This function can be called again without the need of initializing the algorithm with
	/// createSuperpixelLSC(). This save the computational cost of allocating memory for all the
	/// structures of the algorithm.
	/// 
	/// ## Parameters
	/// * num_iterations: Number of iterations. Higher number improves the result.
	/// 
	/// The function computes the superpixels segmentation of an image with the parameters initialized
	/// with the function createSuperpixelLSC(). The algorithms starts from a grid of superpixels and
	/// then refines the boundaries by proposing updates of edges boundaries.
	/// 
	/// ## C++ default parameters
	/// * num_iterations: 10
	#[inline]
	fn iterate(&mut self, num_iterations: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelLSC_iterate_int(self.as_raw_mut_SuperpixelLSC(), num_iterations) }.into_result()?;
		Ok(ret)
	}
	
	/// Enforce label connectivity.
	/// 
	/// ## Parameters
	/// * min_element_size: The minimum element size in percents that should be absorbed into a bigger
	/// superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
	/// that less then a quarter sized superpixel should be absorbed, this is default.
	/// 
	/// The function merge component that is too small, assigning the previously found adjacent label
	/// to this component. Calling this function may change the final number of superpixels.
	/// 
	/// ## C++ default parameters
	/// * min_element_size: 25
	#[inline]
	fn enforce_label_connectivity(&mut self, min_element_size: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelLSC_enforceLabelConnectivity_int(self.as_raw_mut_SuperpixelLSC(), min_element_size) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class implementing the SEEDS (Superpixels Extracted via Energy-Driven Sampling) superpixels
/// algorithm described in [VBRV14](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_VBRV14) .
/// 
/// The algorithm uses an efficient hill-climbing algorithm to optimize the superpixels' energy
/// function that is based on color histograms and a boundary term, which is optional. The energy
/// function encourages superpixels to be of the same color, and if the boundary term is activated, the
/// superpixels have smooth boundaries and are of similar shape. In practice it starts from a regular
/// grid of superpixels and moves the pixels or blocks of pixels at the boundaries to refine the
/// solution. The algorithm runs in real-time using a single CPU.
pub trait SuperpixelSEEDSConst: core::AlgorithmTraitConst {
	fn as_raw_SuperpixelSEEDS(&self) -> *const c_void;

}

pub trait SuperpixelSEEDS: core::AlgorithmTrait + crate::ximgproc::SuperpixelSEEDSConst {
	fn as_raw_mut_SuperpixelSEEDS(&mut self) -> *mut c_void;

	/// Calculates the superpixel segmentation on a given image stored in SuperpixelSEEDS object.
	/// 
	/// The function computes the superpixels segmentation of an image with the parameters initialized
	/// with the function createSuperpixelSEEDS().
	#[inline]
	fn get_number_of_superpixels(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSEEDS_getNumberOfSuperpixels(self.as_raw_mut_SuperpixelSEEDS()) }.into_result()?;
		Ok(ret)
	}
	
	/// Calculates the superpixel segmentation on a given image with the initialized
	/// parameters in the SuperpixelSEEDS object.
	/// 
	/// This function can be called again for other images without the need of initializing the
	/// algorithm with createSuperpixelSEEDS(). This save the computational cost of allocating memory
	/// for all the structures of the algorithm.
	/// 
	/// ## Parameters
	/// * img: Input image. Supported formats: CV_8U, CV_16U, CV_32F. Image size & number of
	/// channels must match with the initialized image size & channels with the function
	/// createSuperpixelSEEDS(). It should be in HSV or Lab color space. Lab is a bit better, but also
	/// slower.
	/// 
	/// * num_iterations: Number of pixel level iterations. Higher number improves the result.
	/// 
	/// The function computes the superpixels segmentation of an image with the parameters initialized
	/// with the function createSuperpixelSEEDS(). The algorithms starts from a grid of superpixels and
	/// then refines the boundaries by proposing updates of blocks of pixels that lie at the boundaries
	/// from large to smaller size, finalizing with proposing pixel updates. An illustrative example
	/// can be seen below.
	/// 
	/// ![image](https://docs.opencv.org/4.5.4/superpixels_blocks2.png)
	/// 
	/// ## C++ default parameters
	/// * num_iterations: 4
	#[inline]
	fn iterate(&mut self, img: &dyn core::ToInputArray, num_iterations: i32) -> Result<()> {
		input_array_arg!(img);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSEEDS_iterate_const__InputArrayR_int(self.as_raw_mut_SuperpixelSEEDS(), img.as_raw__InputArray(), num_iterations) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the segmentation labeling of the image.
	/// 
	/// Each label represents a superpixel, and each pixel is assigned to one superpixel label.
	/// 
	/// ## Parameters
	/// * labels_out: Return: A CV_32UC1 integer array containing the labels of the superpixel
	/// segmentation. The labels are in the range [0, getNumberOfSuperpixels()].
	/// 
	/// The function returns an image with ssthe labels of the superpixel segmentation. The labels are in
	/// the range [0, getNumberOfSuperpixels()].
	#[inline]
	fn get_labels(&mut self, labels_out: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(labels_out);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSEEDS_getLabels_const__OutputArrayR(self.as_raw_mut_SuperpixelSEEDS(), labels_out.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the mask of the superpixel segmentation stored in SuperpixelSEEDS object.
	/// 
	/// ## Parameters
	/// * image: Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border,
	/// and 0 otherwise.
	/// 
	/// * thick_line: If false, the border is only one pixel wide, otherwise all pixels at the border
	/// are masked.
	/// 
	/// The function return the boundaries of the superpixel segmentation.
	/// 
	/// 
	/// Note:
	///    *   (Python) A demo on how to generate superpixels in images from the webcam can be found at
	///        opencv_source_code/samples/python2/seeds.py
	///    *   (cpp) A demo on how to generate superpixels in images from the webcam can be found at
	///        opencv_source_code/modules/ximgproc/samples/seeds.cpp. By adding a file image as a command
	///        line argument, the static image will be used instead of the webcam.
	///    *   It will show a window with the video from the webcam with the superpixel boundaries marked
	///        in red (see below). Use Space to switch between different output modes. At the top of the
	///        window there are 4 sliders, from which the user can change on-the-fly the number of
	///        superpixels, the number of block levels, the strength of the boundary prior term to modify
	///        the shape, and the number of iterations at pixel level. This is useful to play with the
	///        parameters and set them to the user convenience. In the console the frame-rate of the
	///        algorithm is indicated.
	/// 
	/// ![image](https://docs.opencv.org/4.5.4/superpixels_demo.png)
	/// 
	/// ## C++ default parameters
	/// * thick_line: false
	#[inline]
	fn get_label_contour_mask(&mut self, image: &mut dyn core::ToOutputArray, thick_line: bool) -> Result<()> {
		output_array_arg!(image);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSEEDS_getLabelContourMask_const__OutputArrayR_bool(self.as_raw_mut_SuperpixelSEEDS(), image.as_raw__OutputArray(), thick_line) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels
/// algorithm described in [Achanta2012](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Achanta2012).
/// 
/// SLIC (Simple Linear Iterative Clustering) clusters pixels using pixel channels and image plane space
/// to efficiently generate compact, nearly uniform superpixels. The simplicity of approach makes it
/// extremely easy to use a lone parameter specifies the number of superpixels and the efficiency of
/// the algorithm makes it very practical.
/// Several optimizations are available for SLIC class:
/// SLICO stands for "Zero parameter SLIC" and it is an optimization of baseline SLIC described in [Achanta2012](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Achanta2012).
/// MSLIC stands for "Manifold SLIC" and it is an optimization of baseline SLIC described in [Liu_2017_IEEE](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_Liu_2017_IEEE).
pub trait SuperpixelSLICConst: core::AlgorithmTraitConst {
	fn as_raw_SuperpixelSLIC(&self) -> *const c_void;

	/// Calculates the actual amount of superpixels on a given segmentation computed
	/// and stored in SuperpixelSLIC object.
	#[inline]
	fn get_number_of_superpixels(&self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSLIC_getNumberOfSuperpixels_const(self.as_raw_SuperpixelSLIC()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the segmentation labeling of the image.
	/// 
	/// Each label represents a superpixel, and each pixel is assigned to one superpixel label.
	/// 
	/// ## Parameters
	/// * labels_out: Return: A CV_32SC1 integer array containing the labels of the superpixel
	/// segmentation. The labels are in the range [0, getNumberOfSuperpixels()].
	/// 
	/// The function returns an image with the labels of the superpixel segmentation. The labels are in
	/// the range [0, getNumberOfSuperpixels()].
	#[inline]
	fn get_labels(&self, labels_out: &mut dyn core::ToOutputArray) -> Result<()> {
		output_array_arg!(labels_out);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSLIC_getLabels_const_const__OutputArrayR(self.as_raw_SuperpixelSLIC(), labels_out.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.
	/// 
	/// ## Parameters
	/// * image: Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
	/// and 0 otherwise.
	/// 
	/// * thick_line: If false, the border is only one pixel wide, otherwise all pixels at the border
	/// are masked.
	/// 
	/// The function return the boundaries of the superpixel segmentation.
	/// 
	/// ## C++ default parameters
	/// * thick_line: true
	#[inline]
	fn get_label_contour_mask(&self, image: &mut dyn core::ToOutputArray, thick_line: bool) -> Result<()> {
		output_array_arg!(image);
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSLIC_getLabelContourMask_const_const__OutputArrayR_bool(self.as_raw_SuperpixelSLIC(), image.as_raw__OutputArray(), thick_line) }.into_result()?;
		Ok(ret)
	}
	
}

pub trait SuperpixelSLIC: core::AlgorithmTrait + crate::ximgproc::SuperpixelSLICConst {
	fn as_raw_mut_SuperpixelSLIC(&mut self) -> *mut c_void;

	/// Calculates the superpixel segmentation on a given image with the initialized
	/// parameters in the SuperpixelSLIC object.
	/// 
	/// This function can be called again without the need of initializing the algorithm with
	/// createSuperpixelSLIC(). This save the computational cost of allocating memory for all the
	/// structures of the algorithm.
	/// 
	/// ## Parameters
	/// * num_iterations: Number of iterations. Higher number improves the result.
	/// 
	/// The function computes the superpixels segmentation of an image with the parameters initialized
	/// with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and
	/// then refines the boundaries by proposing updates of edges boundaries.
	/// 
	/// ## C++ default parameters
	/// * num_iterations: 10
	#[inline]
	fn iterate(&mut self, num_iterations: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSLIC_iterate_int(self.as_raw_mut_SuperpixelSLIC(), num_iterations) }.into_result()?;
		Ok(ret)
	}
	
	/// Enforce label connectivity.
	/// 
	/// ## Parameters
	/// * min_element_size: The minimum element size in percents that should be absorbed into a bigger
	/// superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
	/// that less then a quarter sized superpixel should be absorbed, this is default.
	/// 
	/// The function merge component that is too small, assigning the previously found adjacent label
	/// to this component. Calling this function may change the final number of superpixels.
	/// 
	/// ## C++ default parameters
	/// * min_element_size: 25
	#[inline]
	fn enforce_label_connectivity(&mut self, min_element_size: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_SuperpixelSLIC_enforceLabelConnectivity_int(self.as_raw_mut_SuperpixelSLIC(), min_element_size) }.into_result()?;
		Ok(ret)
	}
	
}

/// Graph Based Segmentation Algorithm.
/// The class implements the algorithm described in [PFF2004](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_PFF2004) .
pub trait GraphSegmentationConst: core::AlgorithmTraitConst {
	fn as_raw_GraphSegmentation(&self) -> *const c_void;

}

pub trait GraphSegmentation: core::AlgorithmTrait + crate::ximgproc::GraphSegmentationConst {
	fn as_raw_mut_GraphSegmentation(&mut self) -> *mut c_void;

	/// Segment an image and store output in dst
	/// ## Parameters
	/// * src: The input image. Any number of channel (1 (Eg: Gray), 3 (Eg: RGB), 4 (Eg: RGB-D)) can be provided
	/// * dst: The output segmentation. It's a CV_32SC1 Mat with the same number of cols and rows as input image, with an unique, sequential, id for each pixel.
	#[inline]
	fn process_image(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_processImage_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_GraphSegmentation(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_sigma(&mut self, sigma: f64) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_setSigma_double(self.as_raw_mut_GraphSegmentation(), sigma) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_sigma(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_getSigma(self.as_raw_mut_GraphSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_k(&mut self, k: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_setK_float(self.as_raw_mut_GraphSegmentation(), k) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_k(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_getK(self.as_raw_mut_GraphSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_min_size(&mut self, min_size: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_setMinSize_int(self.as_raw_mut_GraphSegmentation(), min_size) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_min_size(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_GraphSegmentation_getMinSize(self.as_raw_mut_GraphSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Selective search segmentation algorithm
/// The class implements the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationConst: core::AlgorithmTraitConst {
	fn as_raw_SelectiveSearchSegmentation(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentation: core::AlgorithmTrait + crate::ximgproc::SelectiveSearchSegmentationConst {
	fn as_raw_mut_SelectiveSearchSegmentation(&mut self) -> *mut c_void;

	/// Set a image used by switch* functions to initialize the class
	/// ## Parameters
	/// * img: The image
	#[inline]
	fn set_base_image(&mut self, img: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(img);
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_setBaseImage_const__InputArrayR(self.as_raw_mut_SelectiveSearchSegmentation(), img.as_raw__InputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Initialize the class with the 'Single stragegy' parameters describled in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
	/// ## Parameters
	/// * k: The k parameter for the graph segmentation
	/// * sigma: The sigma parameter for the graph segmentation
	/// 
	/// ## C++ default parameters
	/// * k: 200
	/// * sigma: 0.8f
	#[inline]
	fn switch_to_single_strategy(&mut self, k: i32, sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_switchToSingleStrategy_int_float(self.as_raw_mut_SelectiveSearchSegmentation(), k, sigma) }.into_result()?;
		Ok(ret)
	}
	
	/// Initialize the class with the 'Selective search fast' parameters describled in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
	/// ## Parameters
	/// * base_k: The k parameter for the first graph segmentation
	/// * inc_k: The increment of the k parameter for all graph segmentations
	/// * sigma: The sigma parameter for the graph segmentation
	/// 
	/// ## C++ default parameters
	/// * base_k: 150
	/// * inc_k: 150
	/// * sigma: 0.8f
	#[inline]
	fn switch_to_selective_search_fast(&mut self, base_k: i32, inc_k: i32, sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_switchToSelectiveSearchFast_int_int_float(self.as_raw_mut_SelectiveSearchSegmentation(), base_k, inc_k, sigma) }.into_result()?;
		Ok(ret)
	}
	
	/// Initialize the class with the 'Selective search fast' parameters describled in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
	/// ## Parameters
	/// * base_k: The k parameter for the first graph segmentation
	/// * inc_k: The increment of the k parameter for all graph segmentations
	/// * sigma: The sigma parameter for the graph segmentation
	/// 
	/// ## C++ default parameters
	/// * base_k: 150
	/// * inc_k: 150
	/// * sigma: 0.8f
	#[inline]
	fn switch_to_selective_search_quality(&mut self, base_k: i32, inc_k: i32, sigma: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_switchToSelectiveSearchQuality_int_int_float(self.as_raw_mut_SelectiveSearchSegmentation(), base_k, inc_k, sigma) }.into_result()?;
		Ok(ret)
	}
	
	/// Add a new image in the list of images to process.
	/// ## Parameters
	/// * img: The image
	#[inline]
	fn add_image(&mut self, img: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(img);
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_addImage_const__InputArrayR(self.as_raw_mut_SelectiveSearchSegmentation(), img.as_raw__InputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// Clear the list of images to process
	#[inline]
	fn clear_images(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_clearImages(self.as_raw_mut_SelectiveSearchSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	/// Add a new graph segmentation in the list of graph segementations to process.
	/// ## Parameters
	/// * g: The graph segmentation
	#[inline]
	fn add_graph_segmentation(&mut self, mut g: core::Ptr<dyn crate::ximgproc::GraphSegmentation>) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_addGraphSegmentation_Ptr_GraphSegmentation_(self.as_raw_mut_SelectiveSearchSegmentation(), g.as_raw_mut_PtrOfGraphSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	/// Clear the list of graph segmentations to process;
	#[inline]
	fn clear_graph_segmentations(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_clearGraphSegmentations(self.as_raw_mut_SelectiveSearchSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	/// Add a new strategy in the list of strategy to process.
	/// ## Parameters
	/// * s: The strategy
	#[inline]
	fn add_strategy(&mut self, mut s: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_addStrategy_Ptr_SelectiveSearchSegmentationStrategy_(self.as_raw_mut_SelectiveSearchSegmentation(), s.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy()) }.into_result()?;
		Ok(ret)
	}
	
	/// Clear the list of strategy to process;
	#[inline]
	fn clear_strategies(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_clearStrategies(self.as_raw_mut_SelectiveSearchSegmentation()) }.into_result()?;
		Ok(ret)
	}
	
	/// Based on all images, graph segmentations and stragies, computes all possible rects and return them
	/// ## Parameters
	/// * rects: The list of rects. The first ones are more relevents than the lasts ones.
	#[inline]
	fn process(&mut self, rects: &mut core::Vector<core::Rect>) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentation_process_vector_Rect_R(self.as_raw_mut_SelectiveSearchSegmentation(), rects.as_raw_mut_VectorOfRect()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Strategie for the selective search segmentation algorithm
/// The class implements a generic stragery for the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationStrategyConst: core::AlgorithmTraitConst {
	fn as_raw_SelectiveSearchSegmentationStrategy(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategy: core::AlgorithmTrait + crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategy(&mut self) -> *mut c_void;

	/// Set a initial image, with a segmentation.
	/// ## Parameters
	/// * img: The input image. Any number of channel can be provided
	/// * regions: A segmentation of the image. The parameter must be the same size of img.
	/// * sizes: The sizes of different regions
	/// * image_id: If not set to -1, try to cache pre-computations. If the same set og (img, regions, size) is used, the image_id need to be the same.
	/// 
	/// ## C++ default parameters
	/// * image_id: -1
	#[inline]
	fn set_image(&mut self, img: &dyn core::ToInputArray, regions: &dyn core::ToInputArray, sizes: &dyn core::ToInputArray, image_id: i32) -> Result<()> {
		input_array_arg!(img);
		input_array_arg!(regions);
		input_array_arg!(sizes);
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentationStrategy_setImage_const__InputArrayR_const__InputArrayR_const__InputArrayR_int(self.as_raw_mut_SelectiveSearchSegmentationStrategy(), img.as_raw__InputArray(), regions.as_raw__InputArray(), sizes.as_raw__InputArray(), image_id) }.into_result()?;
		Ok(ret)
	}
	
	/// Return the score between two regions (between 0 and 1)
	/// ## Parameters
	/// * r1: The first region
	/// * r2: The second region
	#[inline]
	fn get(&mut self, r1: i32, r2: i32) -> Result<f32> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentationStrategy_get_int_int(self.as_raw_mut_SelectiveSearchSegmentationStrategy(), r1, r2) }.into_result()?;
		Ok(ret)
	}
	
	/// Inform the strategy that two regions will be merged
	/// ## Parameters
	/// * r1: The first region
	/// * r2: The second region
	#[inline]
	fn merge(&mut self, r1: i32, r2: i32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentationStrategy_merge_int_int(self.as_raw_mut_SelectiveSearchSegmentationStrategy(), r1, r2) }.into_result()?;
		Ok(ret)
	}
	
}

/// Color-based strategy for the selective search segmentation algorithm
/// The class is implemented from the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationStrategyColorConst: crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_SelectiveSearchSegmentationStrategyColor(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategyColor: crate::ximgproc::SelectiveSearchSegmentationStrategy + crate::ximgproc::SelectiveSearchSegmentationStrategyColorConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategyColor(&mut self) -> *mut c_void;

}

/// Fill-based strategy for the selective search segmentation algorithm
/// The class is implemented from the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationStrategyFillConst: crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_SelectiveSearchSegmentationStrategyFill(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategyFill: crate::ximgproc::SelectiveSearchSegmentationStrategy + crate::ximgproc::SelectiveSearchSegmentationStrategyFillConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategyFill(&mut self) -> *mut c_void;

}

/// Regroup multiple strategies for the selective search segmentation algorithm
pub trait SelectiveSearchSegmentationStrategyMultipleConst: crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_SelectiveSearchSegmentationStrategyMultiple(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategyMultiple: crate::ximgproc::SelectiveSearchSegmentationStrategy + crate::ximgproc::SelectiveSearchSegmentationStrategyMultipleConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategyMultiple(&mut self) -> *mut c_void;

	/// Add a new sub-strategy
	/// ## Parameters
	/// * g: The strategy
	/// * weight: The weight of the strategy
	#[inline]
	fn add_strategy(&mut self, mut g: core::Ptr<dyn crate::ximgproc::SelectiveSearchSegmentationStrategy>, weight: f32) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentationStrategyMultiple_addStrategy_Ptr_SelectiveSearchSegmentationStrategy__float(self.as_raw_mut_SelectiveSearchSegmentationStrategyMultiple(), g.as_raw_mut_PtrOfSelectiveSearchSegmentationStrategy(), weight) }.into_result()?;
		Ok(ret)
	}
	
	/// Remove all sub-strategies
	#[inline]
	fn clear_strategies(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_ximgproc_segmentation_SelectiveSearchSegmentationStrategyMultiple_clearStrategies(self.as_raw_mut_SelectiveSearchSegmentationStrategyMultiple()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Size-based strategy for the selective search segmentation algorithm
/// The class is implemented from the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationStrategySizeConst: crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_SelectiveSearchSegmentationStrategySize(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategySize: crate::ximgproc::SelectiveSearchSegmentationStrategy + crate::ximgproc::SelectiveSearchSegmentationStrategySizeConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategySize(&mut self) -> *mut c_void;

}

/// Texture-based strategy for the selective search segmentation algorithm
/// The class is implemented from the algorithm described in [uijlings2013selective](https://docs.opencv.org/4.5.4/d0/de3/citelist.html#CITEREF_uijlings2013selective).
pub trait SelectiveSearchSegmentationStrategyTextureConst: crate::ximgproc::SelectiveSearchSegmentationStrategyConst {
	fn as_raw_SelectiveSearchSegmentationStrategyTexture(&self) -> *const c_void;

}

pub trait SelectiveSearchSegmentationStrategyTexture: crate::ximgproc::SelectiveSearchSegmentationStrategy + crate::ximgproc::SelectiveSearchSegmentationStrategyTextureConst {
	fn as_raw_mut_SelectiveSearchSegmentationStrategyTexture(&mut self) -> *mut c_void;

}