1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Hierarchical Feature Selection for Efficient Image Segmentation
//! 
//! The opencv hfs module contains an efficient algorithm to segment an image.
//! This module is implemented based on the paper Hierarchical Feature Selection for Efficient
//! Image Segmentation, ECCV 2016. The original project was developed by
//! Yun Liu(https://github.com/yun-liu/hfs).
//! 
//! 
//! Introduction to Hierarchical Feature Selection
//! ----------------------------------------------
//! 
//! 
//! This algorithm is executed in 3 stages:
//! 
//! In the first stage, the algorithm uses SLIC (simple linear iterative clustering) algorithm
//! to obtain the superpixel of the input image.
//! 
//! In the second stage, the algorithm view each superpixel as a node in the graph.
//! It will calculate a feature vector for each edge of the graph. It then calculates a weight
//! for each edge based on the feature vector and trained SVM parameters. After obtaining
//! weight for each edge, it will exploit  EGB (Efficient Graph-based Image Segmentation)
//! algorithm to merge some nodes in the graph thus obtaining a coarser segmentation
//! After these operations, a post process will be executed to merge regions that are smaller
//! then a specific number of pixels into their nearby region.
//! 
//! In the third stage, the algorithm exploits the similar mechanism to further merge
//! the small regions obtained in the second stage into even coarser segmentation.
//! 
//! After these three stages, we can obtain the final segmentation of the image.
//! For further details about the algorithm, please refer to the original paper:
//! Hierarchical Feature Selection for Efficient Image Segmentation, ECCV 2016
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::HfsSegmentConst, super::HfsSegment };
}
pub trait HfsSegmentConst: core::AlgorithmTraitConst {
	fn as_raw_HfsSegment(&self) -> *const c_void;
}
pub trait HfsSegment: core::AlgorithmTrait + crate::hfs::HfsSegmentConst {
	fn as_raw_mut_HfsSegment(&mut self) -> *mut c_void;
	/// @brief: set and get the parameter segEgbThresholdI.
	/// This parameter is used in the second stage mentioned above.
	/// It is a constant used to threshold weights of the edge when merging
	/// adjacent nodes when applying EGB algorithm. The segmentation result
	/// tends to have more regions remained if this value is large and vice versa.
	#[inline]
	fn set_seg_egb_threshold_i(&mut self, c: f32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setSegEgbThresholdI_float(self.as_raw_mut_HfsSegment(), c) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_seg_egb_threshold_i(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getSegEgbThresholdI(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter minRegionSizeI.
	/// This parameter is used in the second stage
	/// mentioned above. After the EGB segmentation, regions that have fewer
	/// pixels then this parameter will be merged into it's adjacent region.
	#[inline]
	fn set_min_region_size_i(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setMinRegionSizeI_int(self.as_raw_mut_HfsSegment(), n) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_min_region_size_i(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getMinRegionSizeI(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter segEgbThresholdII.
	/// This parameter is used in the third stage
	/// mentioned above. It serves the same purpose as segEgbThresholdI.
	/// The segmentation result tends to have more regions remained if
	/// this value is large and vice versa.
	#[inline]
	fn set_seg_egb_threshold_ii(&mut self, c: f32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setSegEgbThresholdII_float(self.as_raw_mut_HfsSegment(), c) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_seg_egb_threshold_ii(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getSegEgbThresholdII(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter minRegionSizeII.
	/// This parameter is used in the third stage
	/// mentioned above. It serves the same purpose as minRegionSizeI
	#[inline]
	fn set_min_region_size_ii(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setMinRegionSizeII_int(self.as_raw_mut_HfsSegment(), n) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_min_region_size_ii(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getMinRegionSizeII(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter spatialWeight.
	/// This parameter is used in the first stage
	/// mentioned above(the SLIC stage). It describes how important is the role
	/// of position when calculating the distance between each pixel and it's
	/// center. The exact formula to calculate the distance is
	/// .
	/// The segmentation result tends to have more local consistency
	/// if this value is larger.
	#[inline]
	fn set_spatial_weight(&mut self, w: f32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setSpatialWeight_float(self.as_raw_mut_HfsSegment(), w) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_spatial_weight(&mut self) -> Result<f32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getSpatialWeight(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter slicSpixelSize.
	/// This parameter is used in the first stage mentioned
	/// above(the SLIC stage). It describes the size of each
	/// superpixel when initializing SLIC. Every superpixel
	/// approximately has 
	/// pixels in the beginning.
	#[inline]
	fn set_slic_spixel_size(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setSlicSpixelSize_int(self.as_raw_mut_HfsSegment(), n) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_slic_spixel_size(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getSlicSpixelSize(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// @brief: set and get the parameter numSlicIter.
	/// This parameter is used in the first stage. It
	/// describes how many iteration to perform when executing SLIC.
	#[inline]
	fn set_num_slic_iter(&mut self, n: i32) -> Result<()> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_setNumSlicIter_int(self.as_raw_mut_HfsSegment(), n) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_num_slic_iter(&mut self) -> Result<i32> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_getNumSlicIter(self.as_raw_mut_HfsSegment()) }.into_result()?;
		Ok(ret)
	}
	
	/// do segmentation gpu
	/// ## Parameters
	/// * src: : the input image
	/// * ifDraw: : if draw the image in the returned Mat. if this parameter is false,
	/// then the content of the returned Mat is a matrix of index, describing the region
	/// each pixel belongs to. And it's data type is CV_16U. If this parameter is true,
	/// then the returned Mat is a segmented picture, and color of each region is the
	/// average color of all pixels in that region. And it's data type is the same as
	/// the input image
	/// 
	/// ## C++ default parameters
	/// * if_draw: true
	#[inline]
	fn perform_segment_gpu(&mut self, src: &dyn core::ToInputArray, if_draw: bool) -> Result<core::Mat> {
		input_array_arg!(src);
		let ret = unsafe { sys::cv_hfs_HfsSegment_performSegmentGpu_const__InputArrayR_bool(self.as_raw_mut_HfsSegment(), src.as_raw__InputArray(), if_draw) }.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// do segmentation with cpu
	/// This method is only implemented for reference.
	/// It is highly NOT recommanded to use it.
	/// 
	/// ## C++ default parameters
	/// * if_draw: true
	#[inline]
	fn perform_segment_cpu(&mut self, src: &dyn core::ToInputArray, if_draw: bool) -> Result<core::Mat> {
		input_array_arg!(src);
		let ret = unsafe { sys::cv_hfs_HfsSegment_performSegmentCpu_const__InputArrayR_bool(self.as_raw_mut_HfsSegment(), src.as_raw__InputArray(), if_draw) }.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}
impl dyn HfsSegment + '_ {
	/// @brief: create a hfs object
	/// ## Parameters
	/// * height: : the height of the input image
	/// * width: : the width of the input image
	/// * segEgbThresholdI: : parameter segEgbThresholdI
	/// * minRegionSizeI: : parameter minRegionSizeI
	/// * segEgbThresholdII: : parameter segEgbThresholdII
	/// * minRegionSizeII: : parameter minRegionSizeII
	/// * spatialWeight: : parameter spatialWeight
	/// * slicSpixelSize: : parameter slicSpixelSize
	/// * numSlicIter: : parameter numSlicIter
	/// 
	/// ## C++ default parameters
	/// * seg_egb_threshold_i: 0.08f
	/// * min_region_size_i: 100
	/// * seg_egb_threshold_ii: 0.28f
	/// * min_region_size_ii: 200
	/// * spatial_weight: 0.6f
	/// * slic_spixel_size: 8
	/// * num_slic_iter: 5
	#[inline]
	pub fn create(height: i32, width: i32, seg_egb_threshold_i: f32, min_region_size_i: i32, seg_egb_threshold_ii: f32, min_region_size_ii: i32, spatial_weight: f32, slic_spixel_size: i32, num_slic_iter: i32) -> Result<core::Ptr<dyn crate::hfs::HfsSegment>> {
		let ret = unsafe { sys::cv_hfs_HfsSegment_create_int_int_float_int_float_int_float_int_int(height, width, seg_egb_threshold_i, min_region_size_i, seg_egb_threshold_ii, min_region_size_ii, spatial_weight, slic_spixel_size, num_slic_iter) }.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::hfs::HfsSegment>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}