Trait opencv::hub_prelude::RICInterpolatorConst [−][src]
pub trait RICInterpolatorConst: SparseMatchInterpolatorConst {
Show 14 methods
fn as_raw_RICInterpolator(&self) -> *const c_void;
fn get_k(&self) -> Result<i32> { ... }
fn get_superpixel_size(&self) -> Result<i32> { ... }
fn get_superpixel_nn_cnt(&self) -> Result<i32> { ... }
fn get_superpixel_ruler(&self) -> Result<f32> { ... }
fn get_superpixel_mode(&self) -> Result<i32> { ... }
fn get_alpha(&self) -> Result<f32> { ... }
fn get_model_iter(&self) -> Result<i32> { ... }
fn get_refine_models(&self) -> Result<bool> { ... }
fn get_max_flow(&self) -> Result<f32> { ... }
fn get_use_variational_refinement(&self) -> Result<bool> { ... }
fn get_use_global_smoother_filter(&self) -> Result<bool> { ... }
fn get_fgs_lambda(&self) -> Result<f32> { ... }
fn get_fgs_sigma(&self) -> Result<f32> { ... }
}Expand description
Sparse match interpolation algorithm based on modified piecewise locally-weighted affine estimator called Robust Interpolation method of Correspondences or RIC from Hu2017 and Variational and Fast Global Smoother as post-processing filter. The RICInterpolator is a extension of the EdgeAwareInterpolator. Main concept of this extension is an piece-wise affine model based on over-segmentation via SLIC superpixel estimation. The method contains an efficient propagation mechanism to estimate among the pieces-wise models.
Required methods
fn as_raw_RICInterpolator(&self) -> *const c_void
Provided methods
K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment. However, lower values would make the interpolation noticeably faster. The original implementation of Hu2017 uses 32. * see also: setK
fn get_superpixel_size(&self) -> Result<i32>
fn get_superpixel_size(&self) -> Result<i32>
Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
See also
setCostMap * setSuperpixelSize
fn get_superpixel_nn_cnt(&self) -> Result<i32>
fn get_superpixel_nn_cnt(&self) -> Result<i32>
Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model. * see also: setSuperpixelNNCnt
fn get_superpixel_ruler(&self) -> Result<f32>
fn get_superpixel_ruler(&self) -> Result<f32>
Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
See also
cv::ximgproc::createSuperpixelSLIC * setSuperpixelRuler
fn get_superpixel_mode(&self) -> Result<i32>
fn get_superpixel_mode(&self) -> Result<i32>
Parameter to choose superpixel algorithm variant to use:
- cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
- cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
- cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
See also
cv::ximgproc::createSuperpixelSLIC * setSuperpixelMode
Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
See also
setAlpha
fn get_model_iter(&self) -> Result<i32>
fn get_model_iter(&self) -> Result<i32>
Parameter defining the number of iterations for piece-wise affine model estimation.
See also
setModelIter
fn get_refine_models(&self) -> Result<bool>
fn get_refine_models(&self) -> Result<bool>
Parameter to choose wether additional refinement of the piece-wise affine models is employed.
See also
setRefineModels
fn get_max_flow(&self) -> Result<f32>
fn get_max_flow(&self) -> Result<f32>
MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model. If the prediction exceeds the treshold the translational model will be applied instead. * see also: setMaxFlow
fn get_use_variational_refinement(&self) -> Result<bool>
fn get_use_variational_refinement(&self) -> Result<bool>
Parameter to choose wether the VariationalRefinement post-processing is employed.
See also
setUseVariationalRefinement
fn get_use_global_smoother_filter(&self) -> Result<bool>
fn get_use_global_smoother_filter(&self) -> Result<bool>
Sets whether the fastGlobalSmootherFilter() post-processing is employed.
See also
setUseGlobalSmootherFilter