1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Macbeth Chart module
//!    # Color Correction Model
//! 
//! 
//! 
//! Introduction
//! ------------
//! 
//! ColorCharts are a tool for calibrating the color profile of camera, which not
//! only depends on the intrinsic and extrinsic parameters of camera but also on the
//! lighting conditions. This is done by taking the image of a chart, such that the
//! value of its colors present in it known, in the image the color values changes
//! depeding on many variables, this gives us the colors initially present and the
//! colors that are present in the image, based on this information we can apply any
//! suitable algorithm to find the actual color of all the objects present in the
//! image.
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::MCC_CChecker, super::MCC_CCheckerDraw, super::MCC_DetectorParametersTrait, super::MCC_CCheckerDetector, super::ColorCorrectionModelTrait };
}

/// The CCM with the shape ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes3) performs linear transformation on color values.
pub const CCM_3x3: i32 = 0;
/// The CCM with the shape ![inline formula](https://latex.codecogs.com/png.latex?4%5Ctimes3) performs affine transformation.
pub const CCM_4x3: i32 = 1;
/// DigitalSG ColorChecker with 140 squares
pub const COLORCHECKER_DigitalSG: i32 = 2;
/// Macbeth ColorChecker
pub const COLORCHECKER_Macbeth: i32 = 0;
/// DKK ColorChecker
pub const COLORCHECKER_Vinyl: i32 = 1;
/// https://en.wikipedia.org/wiki/Adobe_RGB_color_space , RGB color space
pub const COLOR_SPACE_AdobeRGB: i32 = 2;
/// https://en.wikipedia.org/wiki/Adobe_RGB_color_space , linear RGB color space
pub const COLOR_SPACE_AdobeRGBL: i32 = 3;
/// https://en.wikipedia.org/wiki/RGB_color_space , RGB color space
pub const COLOR_SPACE_AppleRGB: i32 = 10;
/// https://en.wikipedia.org/wiki/RGB_color_space , linear RGB color space
pub const COLOR_SPACE_AppleRGBL: i32 = 11;
/// https://en.wikipedia.org/wiki/DCI-P3 , RGB color space
pub const COLOR_SPACE_DCI_P3_RGB: i32 = 8;
/// https://en.wikipedia.org/wiki/DCI-P3 , linear RGB color space
pub const COLOR_SPACE_DCI_P3_RGBL: i32 = 9;
/// non-RGB color space
pub const COLOR_SPACE_Lab_A_10: i32 = 33;
/// non-RGB color space
pub const COLOR_SPACE_Lab_A_2: i32 = 32;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D50_10: i32 = 31;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D50_2: i32 = 30;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D55_10: i32 = 35;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D55_2: i32 = 34;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D65_10: i32 = 29;
/// https://en.wikipedia.org/wiki/CIELAB_color_space , non-RGB color space
pub const COLOR_SPACE_Lab_D65_2: i32 = 28;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D75_10: i32 = 37;
/// non-RGB color space
pub const COLOR_SPACE_Lab_D75_2: i32 = 36;
/// non-RGB color space
pub const COLOR_SPACE_Lab_E_10: i32 = 39;
/// non-RGB color space
pub const COLOR_SPACE_Lab_E_2: i32 = 38;
/// https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space , RGB color space
pub const COLOR_SPACE_ProPhotoRGB: i32 = 6;
/// https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space , linear RGB color space
pub const COLOR_SPACE_ProPhotoRGBL: i32 = 7;
/// https://en.wikipedia.org/wiki/Rec._2020 , RGB color space
pub const COLOR_SPACE_REC_2020_RGB: i32 = 14;
/// https://en.wikipedia.org/wiki/Rec._2020 , linear RGB color space
pub const COLOR_SPACE_REC_2020_RGBL: i32 = 15;
/// https://en.wikipedia.org/wiki/Rec._709 , RGB color space
pub const COLOR_SPACE_REC_709_RGB: i32 = 12;
/// https://en.wikipedia.org/wiki/Rec._709 , linear RGB color space
pub const COLOR_SPACE_REC_709_RGBL: i32 = 13;
/// https://en.wikipedia.org/wiki/Wide-gamut_RGB_color_space , RGB color space
pub const COLOR_SPACE_WideGamutRGB: i32 = 4;
/// https://en.wikipedia.org/wiki/Wide-gamut_RGB_color_space , linear RGB color space
pub const COLOR_SPACE_WideGamutRGBL: i32 = 5;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_A_10: i32 = 21;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_A_2: i32 = 20;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D50_10: i32 = 19;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D50_2: i32 = 18;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D55_10: i32 = 23;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D55_2: i32 = 22;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D65_10: i32 = 17;
/// https://en.wikipedia.org/wiki/CIE_1931_color_space , non-RGB color space
pub const COLOR_SPACE_XYZ_D65_2: i32 = 16;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D75_10: i32 = 25;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_D75_2: i32 = 24;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_E_10: i32 = 27;
/// non-RGB color space
pub const COLOR_SPACE_XYZ_E_2: i32 = 26;
/// https://en.wikipedia.org/wiki/SRGB , RGB color space
pub const COLOR_SPACE_sRGB: i32 = 0;
/// https://en.wikipedia.org/wiki/SRGB , linear RGB color space
pub const COLOR_SPACE_sRGBL: i32 = 1;
pub const DISTANCE_CIE2000: i32 = 3;
/// The 1976 formula is the first formula that related a measured color difference to a known set of CIELAB coordinates.
pub const DISTANCE_CIE76: i32 = 0;
/// The 1976 definition was extended to address perceptual non-uniformities.
pub const DISTANCE_CIE94_GRAPHIC_ARTS: i32 = 1;
pub const DISTANCE_CIE94_TEXTILES: i32 = 2;
/// In 1984, the Colour Measurement Committee of the Society of Dyers and Colourists defined a difference measure, also based on the L*C*h color model.
pub const DISTANCE_CMC_1TO1: i32 = 4;
pub const DISTANCE_CMC_2TO1: i32 = 5;
/// Euclidean distance of rgb color space
pub const DISTANCE_RGB: i32 = 6;
/// Euclidean distance of rgbl color space
pub const DISTANCE_RGBL: i32 = 7;
/// the least square method is an optimal solution under the linear RGB distance function
pub const INITIAL_METHOD_LEAST_SQUARE: i32 = 1;
/// The white balance method. The initial value is:
/// 
pub const INITIAL_METHOD_WHITE_BALANCE: i32 = 0;
/// logarithmic polynomial fitting channels respectively; Need assign a value to deg simultaneously
pub const LINEARIZATION_COLORLOGPOLYFIT: i32 = 3;
/// polynomial fitting channels respectively; Need assign a value to deg simultaneously
pub const LINEARIZATION_COLORPOLYFIT: i32 = 2;
/// gamma correction; Need assign a value to gamma simultaneously
pub const LINEARIZATION_GAMMA: i32 = 1;
/// grayscale Logarithmic polynomial fitting;  Need assign a value to deg and dst_whites simultaneously
pub const LINEARIZATION_GRAYLOGPOLYFIT: i32 = 5;
/// grayscale polynomial fitting; Need assign a value to deg and dst_whites simultaneously
pub const LINEARIZATION_GRAYPOLYFIT: i32 = 4;
/// no change is made
pub const LINEARIZATION_IDENTITY: i32 = 0;
/// Standard Macbeth Chart with 24 squares
pub const MCC_MCC24: i32 = 0;
/// DigitalSG with 140 squares
pub const MCC_SG140: i32 = 1;
/// DKK color chart with 12 squares and 6 rectangle
pub const MCC_VINYL18: i32 = 2;
/// Enum of the possible types of ccm.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum CCM_TYPE {
	/// The CCM with the shape ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes3) performs linear transformation on color values.
	CCM_3x3 = 0,
	/// The CCM with the shape ![inline formula](https://latex.codecogs.com/png.latex?4%5Ctimes3) performs affine transformation.
	CCM_4x3 = 1,
}

opencv_type_enum! { crate::mcc::CCM_TYPE }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum COLOR_SPACE {
	/// https://en.wikipedia.org/wiki/SRGB , RGB color space
	COLOR_SPACE_sRGB = 0,
	/// https://en.wikipedia.org/wiki/SRGB , linear RGB color space
	COLOR_SPACE_sRGBL = 1,
	/// https://en.wikipedia.org/wiki/Adobe_RGB_color_space , RGB color space
	COLOR_SPACE_AdobeRGB = 2,
	/// https://en.wikipedia.org/wiki/Adobe_RGB_color_space , linear RGB color space
	COLOR_SPACE_AdobeRGBL = 3,
	/// https://en.wikipedia.org/wiki/Wide-gamut_RGB_color_space , RGB color space
	COLOR_SPACE_WideGamutRGB = 4,
	/// https://en.wikipedia.org/wiki/Wide-gamut_RGB_color_space , linear RGB color space
	COLOR_SPACE_WideGamutRGBL = 5,
	/// https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space , RGB color space
	COLOR_SPACE_ProPhotoRGB = 6,
	/// https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space , linear RGB color space
	COLOR_SPACE_ProPhotoRGBL = 7,
	/// https://en.wikipedia.org/wiki/DCI-P3 , RGB color space
	COLOR_SPACE_DCI_P3_RGB = 8,
	/// https://en.wikipedia.org/wiki/DCI-P3 , linear RGB color space
	COLOR_SPACE_DCI_P3_RGBL = 9,
	/// https://en.wikipedia.org/wiki/RGB_color_space , RGB color space
	COLOR_SPACE_AppleRGB = 10,
	/// https://en.wikipedia.org/wiki/RGB_color_space , linear RGB color space
	COLOR_SPACE_AppleRGBL = 11,
	/// https://en.wikipedia.org/wiki/Rec._709 , RGB color space
	COLOR_SPACE_REC_709_RGB = 12,
	/// https://en.wikipedia.org/wiki/Rec._709 , linear RGB color space
	COLOR_SPACE_REC_709_RGBL = 13,
	/// https://en.wikipedia.org/wiki/Rec._2020 , RGB color space
	COLOR_SPACE_REC_2020_RGB = 14,
	/// https://en.wikipedia.org/wiki/Rec._2020 , linear RGB color space
	COLOR_SPACE_REC_2020_RGBL = 15,
	/// https://en.wikipedia.org/wiki/CIE_1931_color_space , non-RGB color space
	COLOR_SPACE_XYZ_D65_2 = 16,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D65_10 = 17,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D50_2 = 18,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D50_10 = 19,
	/// non-RGB color space
	COLOR_SPACE_XYZ_A_2 = 20,
	/// non-RGB color space
	COLOR_SPACE_XYZ_A_10 = 21,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D55_2 = 22,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D55_10 = 23,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D75_2 = 24,
	/// non-RGB color space
	COLOR_SPACE_XYZ_D75_10 = 25,
	/// non-RGB color space
	COLOR_SPACE_XYZ_E_2 = 26,
	/// non-RGB color space
	COLOR_SPACE_XYZ_E_10 = 27,
	/// https://en.wikipedia.org/wiki/CIELAB_color_space , non-RGB color space
	COLOR_SPACE_Lab_D65_2 = 28,
	/// non-RGB color space
	COLOR_SPACE_Lab_D65_10 = 29,
	/// non-RGB color space
	COLOR_SPACE_Lab_D50_2 = 30,
	/// non-RGB color space
	COLOR_SPACE_Lab_D50_10 = 31,
	/// non-RGB color space
	COLOR_SPACE_Lab_A_2 = 32,
	/// non-RGB color space
	COLOR_SPACE_Lab_A_10 = 33,
	/// non-RGB color space
	COLOR_SPACE_Lab_D55_2 = 34,
	/// non-RGB color space
	COLOR_SPACE_Lab_D55_10 = 35,
	/// non-RGB color space
	COLOR_SPACE_Lab_D75_2 = 36,
	/// non-RGB color space
	COLOR_SPACE_Lab_D75_10 = 37,
	/// non-RGB color space
	COLOR_SPACE_Lab_E_2 = 38,
	/// non-RGB color space
	COLOR_SPACE_Lab_E_10 = 39,
}

opencv_type_enum! { crate::mcc::COLOR_SPACE }

///  Macbeth and Vinyl ColorChecker with 2deg D50
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum CONST_COLOR {
	/// Macbeth ColorChecker
	COLORCHECKER_Macbeth = 0,
	/// DKK ColorChecker
	COLORCHECKER_Vinyl = 1,
	/// DigitalSG ColorChecker with 140 squares
	COLORCHECKER_DigitalSG = 2,
}

opencv_type_enum! { crate::mcc::CONST_COLOR }

/// Enum of possible functions to calculate the distance between colors.
/// 
/// See https://en.wikipedia.org/wiki/Color_difference for details
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum DISTANCE_TYPE {
	/// The 1976 formula is the first formula that related a measured color difference to a known set of CIELAB coordinates.
	DISTANCE_CIE76 = 0,
	/// The 1976 definition was extended to address perceptual non-uniformities.
	DISTANCE_CIE94_GRAPHIC_ARTS = 1,
	DISTANCE_CIE94_TEXTILES = 2,
	DISTANCE_CIE2000 = 3,
	/// In 1984, the Colour Measurement Committee of the Society of Dyers and Colourists defined a difference measure, also based on the L*C*h color model.
	DISTANCE_CMC_1TO1 = 4,
	DISTANCE_CMC_2TO1 = 5,
	/// Euclidean distance of rgb color space
	DISTANCE_RGB = 6,
	/// Euclidean distance of rgbl color space
	DISTANCE_RGBL = 7,
}

opencv_type_enum! { crate::mcc::DISTANCE_TYPE }

/// Enum of the possible types of initial method.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum INITIAL_METHOD_TYPE {
	/// The white balance method. The initial value is:
	/// 
	INITIAL_METHOD_WHITE_BALANCE = 0,
	/// the least square method is an optimal solution under the linear RGB distance function
	INITIAL_METHOD_LEAST_SQUARE = 1,
}

opencv_type_enum! { crate::mcc::INITIAL_METHOD_TYPE }

/// Linearization transformation type
/// 
/// The first step in color correction is to linearize the detected colors.
/// Because the input color space has not been calibrated, we usually use some empirical methods to linearize.
/// There are several common linearization methods.
/// The first is identical transformation, the second is gamma correction, and the third is polynomial fitting.
/// 
/// Linearization is generally an elementwise function. The mathematical symbols are as follows:
/// 
/// ![inline formula](https://latex.codecogs.com/png.latex?C): any channel of a color, could be ![inline formula](https://latex.codecogs.com/png.latex?R%2C%20G) or ![inline formula](https://latex.codecogs.com/png.latex?B).
/// 
/// ![inline formula](https://latex.codecogs.com/png.latex?R%2C%20G%2C%20%20B):  ![inline formula](https://latex.codecogs.com/png.latex?R%2C%20G%2C%20B) channels respectively.
/// 
/// ![inline formula](https://latex.codecogs.com/png.latex?G): grayscale;
/// 
/// ![inline formula](https://latex.codecogs.com/png.latex?s%2Csl): subscript, which represents the detected data and its linearized value, the former is the input and the latter is the output;
/// 
/// ![inline formula](https://latex.codecogs.com/png.latex?d%2Cdl): subscript, which represents the reference data and its linearized value
/// 
/// 
/// 
/// ### Identical Transformation
/// 
/// No change is made during the Identical transformation linearization, usually because the tristimulus values of the input RGB image is already proportional to the luminance.
/// For example, if the input measurement data is in RAW format, the measurement data is already linear, so no linearization is required.
/// 
/// The identity transformation formula is as follows:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0AC%5F%7Bsl%7D%3DC%5Fs%0A)
/// 
/// ### Gamma Correction
/// 
/// Gamma correction is a means of performing nonlinearity in RGB space, see the Color Space documentation for details.
/// In the linearization part, the value of ![inline formula](https://latex.codecogs.com/png.latex?%5Cgamma) is usually set to 2.2.
/// You can also customize the value.
/// 
/// The formula for gamma correction linearization is as follows:
/// ![block formula](https://latex.codecogs.com/png.latex?%0AC%5F%7Bsl%7D%3DC%5Fs%5E%7B%5Cgamma%7D%2C%5Cqquad%20C%5Fs%5Cge0%5C%5C%0AC%5F%7Bsl%7D%3D%2D%28%2DC%5Fs%29%5E%7B%5Cgamma%7D%2C%5Cqquad%20C%5Fs%3C0%5C%5C%5C%5C%0A)
/// 
/// ### Polynomial Fitting
/// 
/// Polynomial fitting uses polynomials to linearize.
/// Provided the polynomial is:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Af%28x%29%3Da%5Fnx%5En%2Ba%5F%7Bn%2D1%7Dx%5E%7Bn%2D1%7D%2B%2E%2E%2E%20%2Ba%5F0%0A)
/// Then:
/// ![block formula](https://latex.codecogs.com/png.latex?%0AC%5F%7Bsl%7D%3Df%28C%5Fs%29%0A)
/// In practice, ![inline formula](https://latex.codecogs.com/png.latex?n%5Cle3) is used to prevent overfitting.
/// 
/// There are many variants of polynomial fitting, the difference lies in the way of generating ![inline formula](https://latex.codecogs.com/png.latex?f%28x%29).
/// It is usually necessary to use linearized reference colors and corresponding detected colors to calculate the polynomial parameters.
/// However, not all colors can participate in the calculation. The saturation detected colors needs to be removed. See the algorithm introduction document for details.
/// 
/// #### Fitting Channels Respectively
/// 
/// Use three polynomials, ![inline formula](https://latex.codecogs.com/png.latex?r%28x%29%2C%20g%28x%29%2C%20b%28x%29),  to linearize each channel of the RGB color space[1-3]:
/// ![block formula](https://latex.codecogs.com/png.latex?%0AR%5F%7Bsl%7D%3Dr%28R%5Fs%29%5C%5C%0AG%5F%7Bsl%7D%3Dg%28G%5Fs%29%5C%5C%0AB%5F%7Bsl%7D%3Db%28B%5Fs%29%5C%5C%0A)
/// The polynomial is generated by minimizing the residual sum of squares between the detected data and the linearized reference data.
/// Take the R-channel as an example:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0AR%3D%5Carg%20min%5F%7Bf%7D%28%5CSigma%28R%5F%7Bdl%7D%2Df%28R%5FS%29%5E2%29%0A)
/// 
/// It's equivalent to finding the least square regression for below equations:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Af%28R%5F%7Bs1%7D%29%3DR%5F%7Bdl1%7D%5C%5C%0Af%28R%5F%7Bs2%7D%29%3DR%5F%7Bdl2%7D%5C%5C%0A%2E%2E%2E%0A)
/// 
/// With a polynomial, the above equations becomes:
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0AR%5F%7Bs1%7D%5E%7Bn%7D%20%26%20R%5F%7Bs1%7D%5E%7Bn%2D1%7D%20%26%20%2E%2E%2E%20%26%201%5C%5C%0AR%5F%7Bs2%7D%5E%7Bn%7D%20%26%20R%5F%7Bs2%7D%5E%7Bn%2D1%7D%20%26%20%2E%2E%2E%20%26%201%5C%5C%0A%2E%2E%2E%20%26%20%2E%2E%2E%20%26%20%2E%2E%2E%20%26%20%2E%2E%2E%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7Bn%7D%5C%5C%0Aa%5F%7Bn%2D1%7D%5C%5C%0A%2E%2E%2E%20%5C%5C%0Aa%5F0%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0AR%5F%7Bdl1%7D%5C%5C%0AR%5F%7Bdl2%7D%5C%5C%0A%2E%2E%2E%0A%5Cend%7Bbmatrix%7D%0A)
/// It can be expressed as a system of linear equations:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0AAX%3DB%0A)
/// 
/// When the number of reference colors is not less than the degree of the polynomial, the linear system has a least-squares solution:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0AX%3D%28A%5ETA%29%5E%7B%2D1%7DA%5ETB%0A)
/// 
/// Once we get the polynomial coefficients, we can get the polynomial r.
/// 
/// This method of finding polynomial coefficients can be implemented by numpy.polyfit in numpy, expressed here as:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0AR%3Dpolyfit%28R%5FS%2C%20R%5F%7Bdl%7D%29%0A)
/// 
/// Note that, in general, the polynomial that we want to obtain is guaranteed to monotonically increase in the interval [0,1] ,
/// but this means that nonlinear method is needed to generate the polynomials(see [4] for detail).
/// This would greatly increases the complexity of the program.
/// Considering that the monotonicity does not affect the correct operation of the color correction program, polyfit is still used to implement the program.
/// 
/// Parameters for other channels can also be derived in a similar way.
/// 
/// #### Grayscale Polynomial Fitting
/// 
/// In this method[2], single polynomial is used for all channels.
/// The polynomial is still a polyfit result from the detected colors to the linear reference colors.
/// However, only the gray of the reference colors can participate in the calculation.
/// 
/// Since the detected colors corresponding to the gray of reference colors is not necessarily gray, it needs to be grayed.
/// Grayscale refers to the Y channel of the XYZ color space.
/// The color space of the detected data is not determined and cannot be converted into the XYZ space.
/// Therefore, the sRGB formula is used to approximate[5].
/// ![block formula](https://latex.codecogs.com/png.latex?%0AG%5F%7Bs%7D%3D0%2E2126R%5F%7Bs%7D%2B0%2E7152G%5F%7Bs%7D%2B0%2E0722B%5F%7Bs%7D%0A)
/// Then the polynomial parameters can be obtained by using the polyfit.
/// ![block formula](https://latex.codecogs.com/png.latex?%0Af%3Dpolyfit%28G%5F%7Bs%7D%2C%20G%5F%7Bdl%7D%29%0A)
/// After ![inline formula](https://latex.codecogs.com/png.latex?f) is obtained, linearization can be performed.
/// 
/// #### Logarithmic Polynomial Fitting
/// 
/// For gamma correction formula, we take the logarithm:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Aln%28C%5F%7Bsl%7D%29%3D%7B%5Cgamma%7Dln%28C%5Fs%29%2C%5Cqquad%20C%5Fs%5Cge0%5C%0A)
/// It can be seen that there is a linear relationship between ![inline formula](https://latex.codecogs.com/png.latex?ln%28C%5Fs%29) and ![inline formula](https://latex.codecogs.com/png.latex?ln%28C%5F%7Bsl%7D%29). It can be considered that the formula is an approximation of a polynomial relationship, that is, there exists a polynomial ![inline formula](https://latex.codecogs.com/png.latex?f), which makes[2]:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Aln%28C%5F%7Bsl%7D%29%3Df%28ln%28C%5Fs%29%29%2C%20%5Cqquad%20C%5Fs%3E0%5C%5C%0AC%5F%7Bsl%7D%3D0%2C%20%5Cqquad%20C%5Fs%3D0%0A)
/// 
/// Because ![inline formula](https://latex.codecogs.com/png.latex?exp%28ln%280%29%29%5Cto%5Cinfty%20), the channel whose component is 0 is directly mapped to 0 in the formula above.
/// 
/// For fitting channels respectively, we have:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Ar%3Dpolyfit%28ln%28R%5Fs%29%2Cln%28R%5F%7Bdl%7D%29%29%5C%5C%0Ag%3Dpolyfit%28ln%28G%5Fs%29%2Cln%28G%5F%7Bdl%7D%29%29%5C%5C%0Ab%3Dpolyfit%28ln%28B%5Fs%29%2Cln%28B%5F%7Bdl%7D%29%29%5C%5C%0A)
/// Note that the parameter of ![inline formula](https://latex.codecogs.com/png.latex?ln%28%2A%29%20) cannot be 0.
/// Therefore, we need to delete the channels whose values are 0 from ![inline formula](https://latex.codecogs.com/png.latex?R%5Fs%20) and ![inline formula](https://latex.codecogs.com/png.latex?R%5F%7Bdl%7D%20), ![inline formula](https://latex.codecogs.com/png.latex?G%5Fs) and ![inline formula](https://latex.codecogs.com/png.latex?G%5F%7Bdl%7D), ![inline formula](https://latex.codecogs.com/png.latex?B%5Fs) and ![inline formula](https://latex.codecogs.com/png.latex?B%5F%7Bdl%7D).
/// 
/// Therefore:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0Aln%28R%5F%7Bsl%7D%29%3Dr%28ln%28R%5Fs%29%29%2C%20%5Cqquad%20R%5Fs%3E0%5C%5C%0AR%5F%7Bsl%7D%3D0%2C%20%5Cqquad%20R%5Fs%3D0%5C%5C%0Aln%28G%5F%7Bsl%7D%29%3Dg%28ln%28G%5Fs%29%29%2C%5Cqquad%20G%5Fs%3E0%5C%5C%0AG%5F%7Bsl%7D%3D0%2C%20%5Cqquad%20G%5Fs%3D0%5C%5C%0Aln%28B%5F%7Bsl%7D%29%3Db%28ln%28B%5Fs%29%29%2C%5Cqquad%20B%5Fs%3E0%5C%5C%0AB%5F%7Bsl%7D%3D0%2C%20%5Cqquad%20B%5Fs%3D0%5C%5C%0A)
/// 
/// For grayscale polynomials, there are also:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Af%3Dpolyfit%28ln%28G%5F%7Bsl%7D%29%2Cln%28G%5F%7Bdl%7D%29%29%0A)
/// and:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Aln%28C%5F%7Bsl%7D%29%3Df%28ln%28C%5Fs%29%29%2C%20%5Cqquad%20C%5Fs%3E0%5C%5C%0AC%5Fsl%3D0%2C%20%5Cqquad%20C%5Fs%3D0%0A)
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum LINEAR_TYPE {
	/// no change is made
	LINEARIZATION_IDENTITY = 0,
	/// gamma correction; Need assign a value to gamma simultaneously
	LINEARIZATION_GAMMA = 1,
	/// polynomial fitting channels respectively; Need assign a value to deg simultaneously
	LINEARIZATION_COLORPOLYFIT = 2,
	/// logarithmic polynomial fitting channels respectively; Need assign a value to deg simultaneously
	LINEARIZATION_COLORLOGPOLYFIT = 3,
	/// grayscale polynomial fitting; Need assign a value to deg and dst_whites simultaneously
	LINEARIZATION_GRAYPOLYFIT = 4,
	/// grayscale Logarithmic polynomial fitting;  Need assign a value to deg and dst_whites simultaneously
	LINEARIZATION_GRAYLOGPOLYFIT = 5,
}

opencv_type_enum! { crate::mcc::LINEAR_TYPE }

/// TYPECHART
/// 
/// \brief enum to hold the type of the checker
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum MCC_TYPECHART {
	/// Standard Macbeth Chart with 24 squares
	MCC24 = 0,
	/// DigitalSG with 140 squares
	SG140 = 1,
	/// DKK color chart with 12 squares and 6 rectangle
	VINYL18 = 2,
}

opencv_type_enum! { crate::mcc::MCC_TYPECHART }

/// Core class of ccm model
/// 
/// Produce a ColorCorrectionModel instance for inference
pub trait ColorCorrectionModelTrait {
	fn as_raw_ColorCorrectionModel(&self) -> *const c_void;
	fn as_raw_mut_ColorCorrectionModel(&mut self) -> *mut c_void;

	/// set ColorSpace
	/// 
	/// Note: It should be some RGB color space;
	/// Supported list of color cards:
	/// - @ref COLOR_SPACE_sRGB
	/// - @ref COLOR_SPACE_AdobeRGB
	/// - @ref COLOR_SPACE_WideGamutRGB
	/// - @ref COLOR_SPACE_ProPhotoRGB
	/// - @ref COLOR_SPACE_DCI_P3_RGB
	/// - @ref COLOR_SPACE_AppleRGB
	/// - @ref COLOR_SPACE_REC_709_RGB
	/// - @ref COLOR_SPACE_REC_2020_RGB
	/// ## Parameters
	/// * cs: the absolute color space that detected colors convert to;
	/// 
	///           default: @ref COLOR_SPACE_sRGB
	fn set_color_space(&mut self, cs: crate::mcc::COLOR_SPACE) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setColorSpace_COLOR_SPACE(self.as_raw_mut_ColorCorrectionModel(), cs) }.into_result()
	}
	
	/// set ccm_type
	/// ## Parameters
	/// * ccm_type: the shape of color correction matrix(CCM);
	/// 
	///                default: @ref CCM_3x3
	fn set_ccm_type(&mut self, ccm_type: crate::mcc::CCM_TYPE) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setCCM_TYPE_CCM_TYPE(self.as_raw_mut_ColorCorrectionModel(), ccm_type) }.into_result()
	}
	
	/// set Distance
	/// ## Parameters
	/// * distance: the type of color distance;
	/// 
	///                default: @ref DISTANCE_CIE2000
	fn set_distance(&mut self, distance: crate::mcc::DISTANCE_TYPE) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setDistance_DISTANCE_TYPE(self.as_raw_mut_ColorCorrectionModel(), distance) }.into_result()
	}
	
	/// set Linear
	/// ## Parameters
	/// * linear_type: the method of linearization;
	/// 
	///                   default: @ref LINEARIZATION_GAMMA
	fn set_linear(&mut self, linear_type: crate::mcc::LINEAR_TYPE) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setLinear_LINEAR_TYPE(self.as_raw_mut_ColorCorrectionModel(), linear_type) }.into_result()
	}
	
	/// set Gamma
	/// 
	/// 
	/// Note: only valid when linear is set to "gamma";
	/// 
	/// 
	/// ## Parameters
	/// * gamma: the gamma value of gamma correction;
	/// 
	///              default: 2.2;
	fn set_linear_gamma(&mut self, gamma: &f64) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setLinearGamma_const_doubleR(self.as_raw_mut_ColorCorrectionModel(), gamma) }.into_result()
	}
	
	/// set degree
	///     
	/// Note: only valid when linear is set to
	///    - @ref LINEARIZATION_COLORPOLYFIT
	///    - @ref LINEARIZATION_GRAYPOLYFIT
	///    - @ref LINEARIZATION_COLORLOGPOLYFIT
	///    - @ref LINEARIZATION_GRAYLOGPOLYFIT
	/// 
	/// ## Parameters
	/// * deg: the degree of linearization polynomial;
	/// 
	///        default: 3
	fn set_linear_degree(&mut self, deg: &i32) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setLinearDegree_const_intR(self.as_raw_mut_ColorCorrectionModel(), deg) }.into_result()
	}
	
	/// set SaturatedThreshold.
	///            The colors in the closed interval [lower, upper] are reserved to participate
	///            in the calculation of the loss function and initialization parameters
	/// ## Parameters
	/// * lower: the lower threshold to determine saturation;
	/// 
	///        default: 0;
	/// * upper: the upper threshold to determine saturation;
	/// 
	///              default: 0
	fn set_saturated_threshold(&mut self, lower: &f64, upper: &f64) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setSaturatedThreshold_const_doubleR_const_doubleR(self.as_raw_mut_ColorCorrectionModel(), lower, upper) }.into_result()
	}
	
	/// set WeightsList
	/// ## Parameters
	/// * weights_list: the list of weight of each color;
	/// 
	///                    default: empty array
	fn set_weights_list(&mut self, weights_list: &core::Mat) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setWeightsList_const_MatR(self.as_raw_mut_ColorCorrectionModel(), weights_list.as_raw_Mat()) }.into_result()
	}
	
	/// set WeightCoeff
	/// ## Parameters
	/// * weights_coeff: the exponent number of L* component of the reference color in CIE Lab color space;
	/// 
	///                      default: 0
	fn set_weight_coeff(&mut self, weights_coeff: &f64) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setWeightCoeff_const_doubleR(self.as_raw_mut_ColorCorrectionModel(), weights_coeff) }.into_result()
	}
	
	/// set InitialMethod
	/// ## Parameters
	/// * initial_method_type: the method of calculating CCM initial value;
	/// 
	///        default: INITIAL_METHOD_LEAST_SQUARE
	fn set_initial_method(&mut self, initial_method_type: crate::mcc::INITIAL_METHOD_TYPE) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setInitialMethod_INITIAL_METHOD_TYPE(self.as_raw_mut_ColorCorrectionModel(), initial_method_type) }.into_result()
	}
	
	/// set MaxCount
	/// ## Parameters
	/// * max_count: used in MinProblemSolver-DownhillSolver;
	/// 
	///    Terminal criteria to the algorithm;
	/// 
	///                  default: 5000;
	fn set_max_count(&mut self, max_count: &i32) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setMaxCount_const_intR(self.as_raw_mut_ColorCorrectionModel(), max_count) }.into_result()
	}
	
	/// set Epsilon
	/// ## Parameters
	/// * epsilon: used in MinProblemSolver-DownhillSolver;
	/// 
	///    Terminal criteria to the algorithm;
	/// 
	///               default: 1e-4;
	fn set_epsilon(&mut self, epsilon: &f64) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_setEpsilon_const_doubleR(self.as_raw_mut_ColorCorrectionModel(), epsilon) }.into_result()
	}
	
	/// make color correction
	fn run(&mut self) -> Result<()> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_run(self.as_raw_mut_ColorCorrectionModel()) }.into_result()
	}
	
	fn get_ccm(&self) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_getCCM_const(self.as_raw_ColorCorrectionModel()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_loss(&self) -> Result<f64> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_getLoss_const(self.as_raw_ColorCorrectionModel()) }.into_result()
	}
	
	fn get_src_rgbl(&self) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_get_src_rgbl_const(self.as_raw_ColorCorrectionModel()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_dst_rgbl(&self) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_get_dst_rgbl_const(self.as_raw_ColorCorrectionModel()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_mask(&self) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_getMask_const(self.as_raw_ColorCorrectionModel()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_weights(&self) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_getWeights_const(self.as_raw_ColorCorrectionModel()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	/// Infer using fitting ccm.
	/// ## Parameters
	/// * img: the input image.
	/// * islinear: default false.
	/// ## Returns
	/// the output array.
	/// 
	/// ## C++ default parameters
	/// * islinear: false
	fn infer(&mut self, img: &core::Mat, islinear: bool) -> Result<core::Mat> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_infer_const_MatR_bool(self.as_raw_mut_ColorCorrectionModel(), img.as_raw_Mat(), islinear) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
}

/// Core class of ccm model
/// 
/// Produce a ColorCorrectionModel instance for inference
pub struct ColorCorrectionModel {
	ptr: *mut c_void
}

opencv_type_boxed! { ColorCorrectionModel }

impl Drop for ColorCorrectionModel {
	fn drop(&mut self) {
		extern "C" { fn cv_ColorCorrectionModel_delete(instance: *mut c_void); }
		unsafe { cv_ColorCorrectionModel_delete(self.as_raw_mut_ColorCorrectionModel()) };
	}
}

impl ColorCorrectionModel {
	#[inline] pub fn as_raw_ColorCorrectionModel(&self) -> *const c_void { self.as_raw() }
	#[inline] pub fn as_raw_mut_ColorCorrectionModel(&mut self) -> *mut c_void { self.as_raw_mut() }
}

unsafe impl Send for ColorCorrectionModel {}

impl crate::mcc::ColorCorrectionModelTrait for ColorCorrectionModel {
	#[inline] fn as_raw_ColorCorrectionModel(&self) -> *const c_void { self.as_raw() }
	#[inline] fn as_raw_mut_ColorCorrectionModel(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl ColorCorrectionModel {
	/// Color Correction Model
	/// 
	/// Supported list of color cards:
	/// - @ref COLORCHECKER_Macbeth, the Macbeth ColorChecker
	/// - @ref COLORCHECKER_Vinyl, the DKK ColorChecker
	/// - @ref COLORCHECKER_DigitalSG, the DigitalSG ColorChecker with 140 squares
	/// 
	/// ## Parameters
	/// * src: detected colors of ColorChecker patches;
	/// 
	///            the color type is RGB not BGR, and the color values are in [0, 1];
	/// * constcolor: the Built-in color card
	pub fn new(src: &core::Mat, constcolor: crate::mcc::CONST_COLOR) -> Result<crate::mcc::ColorCorrectionModel> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_ColorCorrectionModel_const_MatR_CONST_COLOR(src.as_raw_Mat(), constcolor) }.into_result().map(|r| unsafe { crate::mcc::ColorCorrectionModel::opencv_from_extern(r) } )
	}
	
	/// Color Correction Model
	/// ## Parameters
	/// * src: detected colors of ColorChecker patches;
	/// 
	///           the color type is RGB not BGR, and the color values are in [0, 1];
	/// * colors: the reference color values, the color values are in [0, 1].
	/// 
	/// * ref_cs: the corresponding color space
	///            If the color type is some RGB, the format is RGB not BGR;
	/// 
	pub fn new_1(src: &core::Mat, mut colors: core::Mat, ref_cs: crate::mcc::COLOR_SPACE) -> Result<crate::mcc::ColorCorrectionModel> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_ColorCorrectionModel_const_MatR_Mat_COLOR_SPACE(src.as_raw_Mat(), colors.as_raw_mut_Mat(), ref_cs) }.into_result().map(|r| unsafe { crate::mcc::ColorCorrectionModel::opencv_from_extern(r) } )
	}
	
	/// Color Correction Model
	/// ## Parameters
	/// * src: detected colors of ColorChecker patches;
	/// 
	///            the color type is RGB not BGR, and the color values are in [0, 1];
	/// * colors: the reference color values, the color values are in [0, 1].
	/// * ref_cs: the corresponding color space
	///            If the color type is some RGB, the format is RGB not BGR;
	/// * colored: mask of colored color
	pub fn new_2(src: &core::Mat, mut colors: core::Mat, ref_cs: crate::mcc::COLOR_SPACE, mut colored: core::Mat) -> Result<crate::mcc::ColorCorrectionModel> {
		unsafe { sys::cv_ccm_ColorCorrectionModel_ColorCorrectionModel_const_MatR_Mat_COLOR_SPACE_Mat(src.as_raw_Mat(), colors.as_raw_mut_Mat(), ref_cs, colored.as_raw_mut_Mat()) }.into_result().map(|r| unsafe { crate::mcc::ColorCorrectionModel::opencv_from_extern(r) } )
	}
	
}

/// CChecker
/// 
/// \brief checker object
/// 
///    This class contains the information about the detected checkers,i.e, their
///    type, the corners of the chart, the color profile, the cost, centers chart,
///    etc.
pub trait MCC_CChecker {
	fn as_raw_MCC_CChecker(&self) -> *const c_void;
	fn as_raw_mut_MCC_CChecker(&mut self) -> *mut c_void;

	fn set_target(&mut self, _target: crate::mcc::MCC_TYPECHART) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setTarget_TYPECHART(self.as_raw_mut_MCC_CChecker(), _target) }.into_result()
	}
	
	fn set_box(&mut self, mut _box: core::Vector::<core::Point2f>) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setBox_vector_Point2f_(self.as_raw_mut_MCC_CChecker(), _box.as_raw_mut_VectorOfPoint2f()) }.into_result()
	}
	
	fn set_charts_rgb(&mut self, mut _charts_rgb: core::Mat) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setChartsRGB_Mat(self.as_raw_mut_MCC_CChecker(), _charts_rgb.as_raw_mut_Mat()) }.into_result()
	}
	
	fn set_charts_y_cb_cr(&mut self, mut _charts_y_cb_cr: core::Mat) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setChartsYCbCr_Mat(self.as_raw_mut_MCC_CChecker(), _charts_y_cb_cr.as_raw_mut_Mat()) }.into_result()
	}
	
	fn set_cost(&mut self, _cost: f32) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setCost_float(self.as_raw_mut_MCC_CChecker(), _cost) }.into_result()
	}
	
	fn set_center(&mut self, _center: core::Point2f) -> Result<()> {
		unsafe { sys::cv_mcc_CChecker_setCenter_Point2f(self.as_raw_mut_MCC_CChecker(), _center.opencv_as_extern()) }.into_result()
	}
	
	fn get_target(&mut self) -> Result<crate::mcc::MCC_TYPECHART> {
		unsafe { sys::cv_mcc_CChecker_getTarget(self.as_raw_mut_MCC_CChecker()) }.into_result()
	}
	
	fn get_box(&mut self) -> Result<core::Vector::<core::Point2f>> {
		unsafe { sys::cv_mcc_CChecker_getBox(self.as_raw_mut_MCC_CChecker()) }.into_result().map(|r| unsafe { core::Vector::<core::Point2f>::opencv_from_extern(r) } )
	}
	
	fn get_charts_rgb(&mut self) -> Result<core::Mat> {
		unsafe { sys::cv_mcc_CChecker_getChartsRGB(self.as_raw_mut_MCC_CChecker()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_charts_y_cb_cr(&mut self) -> Result<core::Mat> {
		unsafe { sys::cv_mcc_CChecker_getChartsYCbCr(self.as_raw_mut_MCC_CChecker()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
	}
	
	fn get_cost(&mut self) -> Result<f32> {
		unsafe { sys::cv_mcc_CChecker_getCost(self.as_raw_mut_MCC_CChecker()) }.into_result()
	}
	
	fn get_center(&mut self) -> Result<core::Point2f> {
		unsafe { sys::cv_mcc_CChecker_getCenter(self.as_raw_mut_MCC_CChecker()) }.into_result()
	}
	
}

impl dyn MCC_CChecker + '_ {
	/// \brief Create a new CChecker object.
	/// \return A pointer to the implementation of the CChecker
	pub fn create() -> Result<core::Ptr::<dyn crate::mcc::MCC_CChecker>> {
		unsafe { sys::cv_mcc_CChecker_create() }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::mcc::MCC_CChecker>::opencv_from_extern(r) } )
	}
	
}
/// A class to find the positions of the ColorCharts in the image.
pub trait MCC_CCheckerDetector: core::AlgorithmTrait {
	fn as_raw_MCC_CCheckerDetector(&self) -> *const c_void;
	fn as_raw_mut_MCC_CCheckerDetector(&mut self) -> *mut c_void;

	/// \brief Set the net which will be used to find the approximate
	///        bounding boxes for the color charts.
	/// 
	/// It is not necessary to use this, but this usually results in
	/// better detection rate.
	/// 
	/// \param net the neural network, if the network in empty, then
	///            the function will return false.
	/// \return true if it was able to set the detector's network,
	///        false otherwise.
	fn set_net(&mut self, mut net: crate::dnn::Net) -> Result<bool> {
		unsafe { sys::cv_mcc_CCheckerDetector_setNet_Net(self.as_raw_mut_MCC_CCheckerDetector(), net.as_raw_mut_Net()) }.into_result()
	}
	
	/// \brief Find the ColorCharts in the given image.
	/// 
	/// The found charts are not returned but instead stored in the
	/// detector, these can be accessed later on using getBestColorChecker()
	/// and getListColorChecker()
	/// \param image image in color space BGR
	/// \param chartType type of the chart to detect
	/// \param regionsOfInterest regions of image to look for the chart, if
	///                          it is empty, charts are looked for in the
	///                          entire image
	/// \param nc number of charts in the image, if you don't know the exact
	///           then keeping this number high helps.
	/// \param useNet if it is true the network provided using the setNet()
	///               is used for preliminary search for regions where chart
	///               could be present, inside the regionsOfInterest provied.
	/// \param params parameters of the detection system. More information
	///               about them can be found in the struct DetectorParameters.
	/// \return true if atleast one chart is detected otherwise false
	/// 
	/// ## C++ default parameters
	/// * nc: 1
	/// * use_net: false
	/// * params: DetectorParameters::create()
	fn process_with_roi(&mut self, image: &dyn core::ToInputArray, chart_type: crate::mcc::MCC_TYPECHART, regions_of_interest: &core::Vector::<core::Rect>, nc: i32, use_net: bool, params: &core::Ptr::<crate::mcc::MCC_DetectorParameters>) -> Result<bool> {
		input_array_arg!(image);
		unsafe { sys::cv_mcc_CCheckerDetector_process_const__InputArrayR_const_TYPECHART_const_vector_Rect_R_const_int_bool_const_Ptr_DetectorParameters_R(self.as_raw_mut_MCC_CCheckerDetector(), image.as_raw__InputArray(), chart_type, regions_of_interest.as_raw_VectorOfRect(), nc, use_net, params.as_raw_PtrOfMCC_DetectorParameters()) }.into_result()
	}
	
	/// \brief Find the ColorCharts in the given image.
	/// 
	/// Differs from the above one only in the arguments.
	/// 
	/// This version searches for the chart in the full image.
	/// 
	/// The found charts are not returned but instead stored in the
	/// detector, these can be accessed later on using getBestColorChecker()
	/// and getListColorChecker()
	/// \param image image in color space BGR
	/// \param chartType type of the chart to detect
	/// \param nc number of charts in the image, if you don't know the exact
	///           then keeping this number high helps.
	/// \param useNet if it is true the network provided using the setNet()
	///               is used for preliminary search for regions where chart
	///               could be present, inside the regionsOfInterest provied.
	/// \param params parameters of the detection system. More information
	///               about them can be found in the struct DetectorParameters.
	/// \return true if atleast one chart is detected otherwise false
	/// 
	/// ## C++ default parameters
	/// * nc: 1
	/// * use_net: false
	/// * params: DetectorParameters::create()
	fn process(&mut self, image: &dyn core::ToInputArray, chart_type: crate::mcc::MCC_TYPECHART, nc: i32, use_net: bool, params: &core::Ptr::<crate::mcc::MCC_DetectorParameters>) -> Result<bool> {
		input_array_arg!(image);
		unsafe { sys::cv_mcc_CCheckerDetector_process_const__InputArrayR_const_TYPECHART_const_int_bool_const_Ptr_DetectorParameters_R(self.as_raw_mut_MCC_CCheckerDetector(), image.as_raw__InputArray(), chart_type, nc, use_net, params.as_raw_PtrOfMCC_DetectorParameters()) }.into_result()
	}
	
	/// \brief Get the best color checker. By the best it means the one
	///        detected with the highest confidence.
	/// \return checker A single colorchecker, if atleast one colorchecker
	///                was detected, 'nullptr' otherwise.
	fn get_best_color_checker(&mut self) -> Result<core::Ptr::<dyn crate::mcc::MCC_CChecker>> {
		unsafe { sys::cv_mcc_CCheckerDetector_getBestColorChecker(self.as_raw_mut_MCC_CCheckerDetector()) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::mcc::MCC_CChecker>::opencv_from_extern(r) } )
	}
	
	/// \brief Get the list of all detected colorcheckers
	/// \return checkers vector of colorcheckers
	fn get_list_color_checker(&mut self) -> Result<core::Vector::<core::Ptr::<dyn crate::mcc::MCC_CChecker>>> {
		unsafe { sys::cv_mcc_CCheckerDetector_getListColorChecker(self.as_raw_mut_MCC_CCheckerDetector()) }.into_result().map(|r| unsafe { core::Vector::<core::Ptr::<dyn crate::mcc::MCC_CChecker>>::opencv_from_extern(r) } )
	}
	
}

impl dyn MCC_CCheckerDetector + '_ {
	/// \brief Returns the implementation of the CCheckerDetector.
	pub fn create() -> Result<core::Ptr::<dyn crate::mcc::MCC_CCheckerDetector>> {
		unsafe { sys::cv_mcc_CCheckerDetector_create() }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::mcc::MCC_CCheckerDetector>::opencv_from_extern(r) } )
	}
	
}
/// \brief checker draw
/// 
/// This class contains the functions for drawing a detected chart.  This class
/// expects a pointer to the checker which will be drawn by this object in the
/// constructor and then later on whenever the draw function is called the
/// checker will be drawn. Remember that it is not possible to change the
/// checkers which will be draw by a given object, as it is decided in the
/// constructor itself. If you want to draw some other object you can create a
/// new CCheckerDraw instance.
/// 
/// The reason for this type of design is that in some videos we can assume that
/// the checker is always in the same position, even if the image changes, so
/// the drawing will always take place at the same position.
pub trait MCC_CCheckerDraw {
	fn as_raw_MCC_CCheckerDraw(&self) -> *const c_void;
	fn as_raw_mut_MCC_CCheckerDraw(&mut self) -> *mut c_void;

	/// \brief Draws the checker to the given image.
	/// \param img image in color space BGR
	/// \return void
	fn draw(&mut self, img: &mut dyn core::ToInputOutputArray) -> Result<()> {
		input_output_array_arg!(img);
		unsafe { sys::cv_mcc_CCheckerDraw_draw_const__InputOutputArrayR(self.as_raw_mut_MCC_CCheckerDraw(), img.as_raw__InputOutputArray()) }.into_result()
	}
	
}

impl dyn MCC_CCheckerDraw + '_ {
	/// \brief Create a new CCheckerDraw object.
	/// \param pChecker The checker which will be drawn by this object.
	/// \param color The color by with which the squares of the checker
	///              will be drawn
	/// \param thickness The thickness with which the sqaures will be
	///                  drawn
	/// \return A pointer to the implementation of the CCheckerDraw
	/// 
	/// ## C++ default parameters
	/// * color: CV_RGB(0,250,0)
	/// * thickness: 2
	pub fn create(mut p_checker: core::Ptr::<dyn crate::mcc::MCC_CChecker>, color: core::Scalar, thickness: i32) -> Result<core::Ptr::<dyn crate::mcc::MCC_CCheckerDraw>> {
		unsafe { sys::cv_mcc_CCheckerDraw_create_Ptr_CChecker__Scalar_int(p_checker.as_raw_mut_PtrOfMCC_CChecker(), color.opencv_as_extern(), thickness) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::mcc::MCC_CCheckerDraw>::opencv_from_extern(r) } )
	}
	
}
/// Parameters for the detectMarker process:
/// - int adaptiveThreshWinSizeMin : minimum window size for adaptive
///                                  thresholding before finding contours
///                                  (default 23).
/// - int adaptiveThreshWinSizeMax : maximum window size for adaptive
///                                  thresholding before finding contours
///                                  (default 153).
/// - int adaptiveThreshWinSizeStep : increments from adaptiveThreshWinSizeMin to
///                                   adaptiveThreshWinSizeMax during the
///                                   thresholding (default 16).
/// - double adaptiveThreshConstant : constant for adaptive thresholding before
///                                   finding contours (default 7)
/// - double minContoursAreaRate : determine minimum area for marker contour to
///                                be detected. This is defined as a rate respect
///                                to the area of the input image. Used only if
///                                neural network is used (default 0.003).
/// - double minContoursArea : determine minimum area for marker contour to be
///                            detected. This is defined as the actual area. Used
///                            only if neural network is not used (default 100).
/// - double confidenceThreshold : minimum confidence for a bounding box detected
///                                by neural network to classify as
///                                detection.(default 0.5)
///                                (0<=confidenceThreshold<=1)
/// - double minContourSolidity : minimum solidity of a contour for it be
///                               detected as a square in the chart. (default
///                               0.9).
/// - double findCandidatesApproxPolyDPEpsMultiplier : multipler to be used in
///                                                    cv::ApproxPolyDP function
///                                                    (default 0.05)
/// - int borderWidth : width of the padding used to pass the inital neural
///                    network detection in the succeeding system.(default 0)
/// - float B0factor : distance between two neighbours squares of the same chart.
///                    Defined as the ratio between distance and large dimension
///                    of square (default 1.25)
/// - float maxError : maximum allowed error in the detection of a chart.
///                    default(0.1)
/// - int minContourPointsAllowed : minium points in a detected contour.
///                                 default(4)
/// - int minContourLengthAllowed : minimum length of a countour. default(100)
/// - int minInterContourDistance : minimum distance between two contours.
///                                 default(100)
/// - int minInterCheckerDistance : minimum distance between two checkers.
///                                 default(10000)
/// - int minImageSize : minimum size of the smaller dimension of the image.
///                      default(1000)
/// - unsigned minGroupSize : minimum number of a squared of a chart that must be
///                           detected. default(4)
pub trait MCC_DetectorParametersTrait {
	fn as_raw_MCC_DetectorParameters(&self) -> *const c_void;
	fn as_raw_mut_MCC_DetectorParameters(&mut self) -> *mut c_void;

	fn adaptive_thresh_win_size_min(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropAdaptiveThreshWinSizeMin_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: adaptive_thresh_win_size_min")
	}
	
	fn set_adaptive_thresh_win_size_min(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropAdaptiveThreshWinSizeMin_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_adaptive_thresh_win_size_min")
	}
	
	fn adaptive_thresh_win_size_max(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropAdaptiveThreshWinSizeMax_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: adaptive_thresh_win_size_max")
	}
	
	fn set_adaptive_thresh_win_size_max(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropAdaptiveThreshWinSizeMax_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_adaptive_thresh_win_size_max")
	}
	
	fn adaptive_thresh_win_size_step(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropAdaptiveThreshWinSizeStep_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: adaptive_thresh_win_size_step")
	}
	
	fn set_adaptive_thresh_win_size_step(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropAdaptiveThreshWinSizeStep_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_adaptive_thresh_win_size_step")
	}
	
	fn adaptive_thresh_constant(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropAdaptiveThreshConstant_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: adaptive_thresh_constant")
	}
	
	fn set_adaptive_thresh_constant(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropAdaptiveThreshConstant_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_adaptive_thresh_constant")
	}
	
	fn min_contours_area_rate(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinContoursAreaRate_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_contours_area_rate")
	}
	
	fn set_min_contours_area_rate(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinContoursAreaRate_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_contours_area_rate")
	}
	
	fn min_contours_area(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinContoursArea_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_contours_area")
	}
	
	fn set_min_contours_area(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinContoursArea_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_contours_area")
	}
	
	fn confidence_threshold(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropConfidenceThreshold_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: confidence_threshold")
	}
	
	fn set_confidence_threshold(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropConfidenceThreshold_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_confidence_threshold")
	}
	
	fn min_contour_solidity(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinContourSolidity_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_contour_solidity")
	}
	
	fn set_min_contour_solidity(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinContourSolidity_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_contour_solidity")
	}
	
	fn find_candidates_approx_poly_dp_eps_multiplier(&self) -> f64 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropFindCandidatesApproxPolyDPEpsMultiplier_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: find_candidates_approx_poly_dp_eps_multiplier")
	}
	
	fn set_find_candidates_approx_poly_dp_eps_multiplier(&mut self, val: f64) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropFindCandidatesApproxPolyDPEpsMultiplier_double(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_find_candidates_approx_poly_dp_eps_multiplier")
	}
	
	fn border_width(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropBorderWidth_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: border_width")
	}
	
	fn set_border_width(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropBorderWidth_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_border_width")
	}
	
	fn b0factor(&self) -> f32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropB0factor_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: b0factor")
	}
	
	fn set_b0factor(&mut self, val: f32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropB0factor_float(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_b0factor")
	}
	
	fn max_error(&self) -> f32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMaxError_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: max_error")
	}
	
	fn set_max_error(&mut self, val: f32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMaxError_float(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_max_error")
	}
	
	fn min_contour_points_allowed(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinContourPointsAllowed_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_contour_points_allowed")
	}
	
	fn set_min_contour_points_allowed(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinContourPointsAllowed_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_contour_points_allowed")
	}
	
	fn min_contour_length_allowed(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinContourLengthAllowed_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_contour_length_allowed")
	}
	
	fn set_min_contour_length_allowed(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinContourLengthAllowed_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_contour_length_allowed")
	}
	
	fn min_inter_contour_distance(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinInterContourDistance_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_inter_contour_distance")
	}
	
	fn set_min_inter_contour_distance(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinInterContourDistance_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_inter_contour_distance")
	}
	
	fn min_inter_checker_distance(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinInterCheckerDistance_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_inter_checker_distance")
	}
	
	fn set_min_inter_checker_distance(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinInterCheckerDistance_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_inter_checker_distance")
	}
	
	fn min_image_size(&self) -> i32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinImageSize_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_image_size")
	}
	
	fn set_min_image_size(&mut self, val: i32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinImageSize_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_image_size")
	}
	
	fn min_group_size(&self) -> u32 {
		unsafe { sys::cv_mcc_DetectorParameters_getPropMinGroupSize_const(self.as_raw_MCC_DetectorParameters()) }.into_result().expect("Infallible function failed: min_group_size")
	}
	
	fn set_min_group_size(&mut self, val: u32) -> () {
		unsafe { sys::cv_mcc_DetectorParameters_setPropMinGroupSize_unsigned_int(self.as_raw_mut_MCC_DetectorParameters(), val) }.into_result().expect("Infallible function failed: set_min_group_size")
	}
	
}

/// Parameters for the detectMarker process:
/// - int adaptiveThreshWinSizeMin : minimum window size for adaptive
///                                  thresholding before finding contours
///                                  (default 23).
/// - int adaptiveThreshWinSizeMax : maximum window size for adaptive
///                                  thresholding before finding contours
///                                  (default 153).
/// - int adaptiveThreshWinSizeStep : increments from adaptiveThreshWinSizeMin to
///                                   adaptiveThreshWinSizeMax during the
///                                   thresholding (default 16).
/// - double adaptiveThreshConstant : constant for adaptive thresholding before
///                                   finding contours (default 7)
/// - double minContoursAreaRate : determine minimum area for marker contour to
///                                be detected. This is defined as a rate respect
///                                to the area of the input image. Used only if
///                                neural network is used (default 0.003).
/// - double minContoursArea : determine minimum area for marker contour to be
///                            detected. This is defined as the actual area. Used
///                            only if neural network is not used (default 100).
/// - double confidenceThreshold : minimum confidence for a bounding box detected
///                                by neural network to classify as
///                                detection.(default 0.5)
///                                (0<=confidenceThreshold<=1)
/// - double minContourSolidity : minimum solidity of a contour for it be
///                               detected as a square in the chart. (default
///                               0.9).
/// - double findCandidatesApproxPolyDPEpsMultiplier : multipler to be used in
///                                                    cv::ApproxPolyDP function
///                                                    (default 0.05)
/// - int borderWidth : width of the padding used to pass the inital neural
///                    network detection in the succeeding system.(default 0)
/// - float B0factor : distance between two neighbours squares of the same chart.
///                    Defined as the ratio between distance and large dimension
///                    of square (default 1.25)
/// - float maxError : maximum allowed error in the detection of a chart.
///                    default(0.1)
/// - int minContourPointsAllowed : minium points in a detected contour.
///                                 default(4)
/// - int minContourLengthAllowed : minimum length of a countour. default(100)
/// - int minInterContourDistance : minimum distance between two contours.
///                                 default(100)
/// - int minInterCheckerDistance : minimum distance between two checkers.
///                                 default(10000)
/// - int minImageSize : minimum size of the smaller dimension of the image.
///                      default(1000)
/// - unsigned minGroupSize : minimum number of a squared of a chart that must be
///                           detected. default(4)
pub struct MCC_DetectorParameters {
	ptr: *mut c_void
}

opencv_type_boxed! { MCC_DetectorParameters }

impl Drop for MCC_DetectorParameters {
	fn drop(&mut self) {
		extern "C" { fn cv_MCC_DetectorParameters_delete(instance: *mut c_void); }
		unsafe { cv_MCC_DetectorParameters_delete(self.as_raw_mut_MCC_DetectorParameters()) };
	}
}

impl MCC_DetectorParameters {
	#[inline] pub fn as_raw_MCC_DetectorParameters(&self) -> *const c_void { self.as_raw() }
	#[inline] pub fn as_raw_mut_MCC_DetectorParameters(&mut self) -> *mut c_void { self.as_raw_mut() }
}

unsafe impl Send for MCC_DetectorParameters {}

impl crate::mcc::MCC_DetectorParametersTrait for MCC_DetectorParameters {
	#[inline] fn as_raw_MCC_DetectorParameters(&self) -> *const c_void { self.as_raw() }
	#[inline] fn as_raw_mut_MCC_DetectorParameters(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl MCC_DetectorParameters {
	pub fn default() -> Result<crate::mcc::MCC_DetectorParameters> {
		unsafe { sys::cv_mcc_DetectorParameters_DetectorParameters() }.into_result().map(|r| unsafe { crate::mcc::MCC_DetectorParameters::opencv_from_extern(r) } )
	}
	
	pub fn create() -> Result<core::Ptr::<crate::mcc::MCC_DetectorParameters>> {
		unsafe { sys::cv_mcc_DetectorParameters_create() }.into_result().map(|r| unsafe { core::Ptr::<crate::mcc::MCC_DetectorParameters>::opencv_from_extern(r) } )
	}
	
}