Module opencv::optflow [−][src]
Optical Flow Algorithms
Dense optical flow algorithms compute motion for each point:
- cv::optflow::calcOpticalFlowSF
- cv::optflow::createOptFlow_DeepFlow
Motion templates is alternative technique for detecting motion and computing its direction. See samples/motempl.py.
- cv::motempl::updateMotionHistory
- cv::motempl::calcMotionGradient
- cv::motempl::calcGlobalOrientation
- cv::motempl::segmentMotion
Functions reading and writing .flo files in “Middlebury” format, see: http://vision.middlebury.edu/flow/code/flow-code/README.txt
- cv::optflow::readOpticalFlow
- cv::optflow::writeOpticalFlow
Modules
| prelude |
Structs
| GPCDetails | |
| GPCMatchingParams | Class encapsulating matching parameters. |
| GPCPatchDescriptor | |
| GPCPatchSample | |
| GPCTrainingParams | Class encapsulating training parameters. |
| GPCTrainingSamples | Class encapsulating training samples. |
| GPCTree | Class for individual tree. |
| GPCTree_Node | |
| OpticalFlowPCAFlow | PCAFlow algorithm. |
| PCAPrior | @brief This class can be used for imposing a learned prior on the resulting optical flow. Solution will be regularized according to this prior. You need to generate appropriate prior file with “learn_prior.py” script beforehand. |
| RLOFOpticalFlowParameter | This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm. |
Enums
| GPCDescType | Descriptor types for the Global Patch Collider. |
| InterpolationType | |
| SolverType | |
| SupportRegionType |
Constants
| GPC_DESCRIPTOR_DCT | Better quality but slow |
| GPC_DESCRIPTOR_WHT | Worse quality but much faster |
| INTERP_EPIC | < Edge-preserving interpolation using ximgproc::EdgeAwareInterpolator, see Revaud2015,Geistert2016. |
| INTERP_GEO | < Fast geodesic interpolation, see Geistert2016 |
| INTERP_RIC | < SLIC based robust interpolation using ximgproc::RICInterpolator, see Hu2017. |
| SR_CROSS | < Apply a adaptive support region obtained by cross-based segmentation as described in Senst2014 |
| SR_FIXED | < Apply a constant support region |
| ST_BILINEAR | < Apply optimized iterative refinement based bilinear equation solutions as described in Senst2013 |
| ST_STANDART | < Apply standard iterative refinement |
Traits
| DenseRLOFOpticalFlow | Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme. |
| DualTVL1OpticalFlow | “Dual TV L1” Optical Flow Algorithm. |
| GPCDetailsTrait | |
| GPCPatchDescriptorTrait | |
| GPCPatchSampleTrait | |
| GPCTrainingSamplesTrait | Class encapsulating training samples. |
| GPCTreeTrait | Class for individual tree. |
| OpticalFlowPCAFlowTrait | PCAFlow algorithm. |
| PCAPriorTrait | @brief This class can be used for imposing a learned prior on the resulting optical flow. Solution will be regularized according to this prior. You need to generate appropriate prior file with “learn_prior.py” script beforehand. |
| RLOFOpticalFlowParameterTrait | This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm. |
| SparseRLOFOpticalFlow | Class used for calculation sparse optical flow and feature tracking with robust local optical flow (RLOF) algorithms. |
Functions
| calc_global_orientation | Calculates a global motion orientation in a selected region. |
| calc_motion_gradient | Calculates a gradient orientation of a motion history image. |
| calc_optical_flow_dense_rlof | Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme. |
| calc_optical_flow_sf | Calculate an optical flow using “SimpleFlow” algorithm. |
| calc_optical_flow_sf_1 | Calculate an optical flow using “SimpleFlow” algorithm. |
| calc_optical_flow_sparse_rlof | Calculates fast optical flow for a sparse feature set using the robust local optical flow (RLOF) similar to optflow::calcOpticalFlowPyrLK(). |
| calc_optical_flow_sparse_to_dense | Fast dense optical flow based on PyrLK sparse matches interpolation. |
| create_opt_flow_deep_flow | DeepFlow optical flow algorithm implementation. |
| create_opt_flow_dense_rlof | Additional interface to the Dense RLOF algorithm - optflow::calcOpticalFlowDenseRLOF() |
| create_opt_flow_dual_tvl1 | Creates instance of cv::DenseOpticalFlow |
| create_opt_flow_farneback | Additional interface to the Farneback’s algorithm - calcOpticalFlowFarneback() |
| create_opt_flow_pca_flow | Creates an instance of PCAFlow |
| create_opt_flow_simple_flow | Additional interface to the SimpleFlow algorithm - calcOpticalFlowSF() |
| create_opt_flow_sparse_rlof | Additional interface to the Sparse RLOF algorithm - optflow::calcOpticalFlowSparseRLOF() |
| create_opt_flow_sparse_to_dense | Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense() |
| read | |
| segment_motion | Splits a motion history image into a few parts corresponding to separate independent motions (for example, left hand, right hand). |
| update_motion_history | Updates the motion history image by a moving silhouette. |
| write |