1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#![doc = include_str!("../README.md")]
use anyhow::{anyhow, Result};
use futures_util::stream::Stream;
use futures_util::StreamExt;
use lazy_static::lazy_static;
use reqwest;
pub extern crate futures_util;
lazy_static! {
static ref BASE_URL: reqwest::Url =
reqwest::Url::parse("https://api.openai.com/v1/models").unwrap();
}
/// This is the main interface to interact with the api.
pub struct Client {
req_client: reqwest::Client,
key: String,
}
/// See <https://platform.openai.com/docs/api-reference/models>.
pub mod models;
/// See <https://platform.openai.com/docs/api-reference/chat>.
pub mod chat;
/// See <https://platform.openai.com/docs/api-reference/completions>.
pub mod completions;
/// See <https://platform.openai.com/docs/api-reference/edits>.
pub mod edits;
/// See <https://platform.openai.com/docs/api-reference/embeddings>.
pub mod embeddings;
impl Client {
/// Create a new client.
/// This will automatically build a [reqwest::Client] used internally.
pub fn new(api_key: &str) -> Client {
let req_client = reqwest::ClientBuilder::new().build().unwrap();
Client {
req_client,
key: api_key.to_owned(),
}
}
/// Build a client using your own [reqwest::Client].
pub fn new_with_client(api_key: &str, req_client: reqwest::Client) -> Client {
Client {
req_client,
key: api_key.to_owned(),
}
}
/// List and describe the various models available in the API. You can refer to the [Models](https://platform.openai.com/docs/models) documentation to understand what models are available and the differences between them.
///
/// ```no_run
/// # let api_key = "";
/// # tokio_test::block_on(async {
/// let client = openai_rust::Client::new(api_key);
/// let models = client.list_models().await.unwrap();
/// # })
/// ```
///
/// See <https://platform.openai.com/docs/api-reference/models/list>.
pub async fn list_models(&self) -> Result<Vec<models::Model>, anyhow::Error> {
let mut url = BASE_URL.clone();
url.set_path("/v1/models");
let res = self
.req_client
.get(url)
.bearer_auth(&self.key)
.send()
.await?;
if res.status() == 200 {
Ok(res.json::<models::ListModelsResponse>().await?.data)
} else {
Err(anyhow!(res.text().await?))
}
}
/// Given a list of messages comprising a conversation, the model will return a response.
///
/// See <https://platform.openai.com/docs/api-reference/chat>.
/// ```no_run
/// # use tokio_test;
/// # tokio_test::block_on(async {
/// # use openai_rust;
/// # let api_key = "";
/// let client = openai_rust::Client::new(api_key);
/// let args = openai_rust::chat::ChatArguments::new("gpt-3.5-turbo", vec![
/// openai_rust::chat::Message {
/// role: "user".to_owned(),
/// content: "Hello GPT!".to_owned(),
/// }
/// ]);
/// let res = client.create_chat(args).await.unwrap();
/// println!("{}", res.choices[0].message.content);
/// # })
/// ```
pub async fn create_chat(
&self,
args: chat::ChatArguments,
) -> Result<chat::ChatResponse, anyhow::Error> {
let mut url = BASE_URL.clone();
url.set_path("/v1/chat/completions");
let res = self
.req_client
.post(url)
.bearer_auth(&self.key)
.json(&args)
.send()
.await?;
if res.status() == 200 {
Ok(res.json::<chat::ChatResponse>().await?)
} else {
Err(anyhow!(res.text().await?))
}
}
/// Like [Client::create_chat] but with streaming.
///
/// See <https://platform.openai.com/docs/api-reference/chat>.
///
/// This method will return a stream. Calling [next](StreamExt::next) on it will return a vector of [chat::stream::ChatResponseEvent]s.
///
/// ```no_run
/// # use tokio_test;
/// # tokio_test::block_on(async {
/// # use openai_rust;
/// # use std::io::Write;
/// # let client = openai_rust::Client::new("");
/// # let args = openai_rust::chat::ChatArguments::new("gpt-3.5-turbo", vec![
/// # openai_rust::chat::Message {
/// # role: "user".to_owned(),
/// # content: "Hello GPT!".to_owned(),
/// # }
/// # ]);
/// use openai_rust::futures_util::StreamExt;
/// let mut res = client.create_chat_stream(args).await.unwrap();
/// while let Some(events) = res.next().await {
/// for event in events.unwrap() {
/// print!("{}", event.choices[0].delta.content.as_ref().unwrap_or(&"".to_owned()));
/// std::io::stdout().flush().unwrap();
/// }
/// }
/// # })
/// ```
///
pub async fn create_chat_stream(
&self,
args: chat::ChatArguments,
) -> Result<impl Stream<Item = Result<Vec<chat::stream::ChatResponseEvent>>>> {
let mut url = BASE_URL.clone();
url.set_path("/v1/chat/completions");
// Enable streaming
let mut args = args;
args.stream = Some(true);
let res = self
.req_client
.post(url)
.bearer_auth(&self.key)
.json(&args)
.send()
.await?;
if res.status() == 200 {
let stream = res.bytes_stream();
let stream = stream.map(chat::stream::deserialize_chat_events);
Ok(stream)
} else {
Err(anyhow!(res.text().await?))
}
}
/// Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position.
///
/// See <https://platform.openai.com/docs/api-reference/completions>
///
/// ```no_run
/// # use openai_rust::*;
/// # use tokio_test;
/// # tokio_test::block_on(async {
/// # let api_key = "";
/// let c = openai_rust::Client::new(api_key);
/// let args = openai_rust::completions::CompletionArguments::new("text-davinci-003", "The quick brown fox".to_owned());
/// println!("{}", c.create_completion(args).await.unwrap().choices[0].text);
/// # })
/// ```
pub async fn create_completion(
&self,
args: completions::CompletionArguments,
) -> Result<completions::CompletionResponse> {
let mut url = BASE_URL.clone();
url.set_path("/v1/completions");
let res = self
.req_client
.post(url)
.bearer_auth(&self.key)
.json(&args)
.send()
.await?;
if res.status() == 200 {
Ok(res.json::<completions::CompletionResponse>().await?)
} else {
Err(anyhow!(res.text().await?))
}
}
/// Given a prompt and an instruction, the model will return an edited version of the prompt.
///
/// See <https://platform.openai.com/docs/api-reference/edits>
///
/// ```no_run
/// # use openai_rust;
/// # use tokio_test;
/// # tokio_test::block_on(async {
/// # let api_key = "";
/// let c = openai_rust::Client::new(api_key);
/// let args = openai_rust::edits::EditArguments::new("text-davinci-edit-001", "The quick brown fox".to_owned(), "Complete this sentence.".to_owned());
/// println!("{}", c.create_edit(args).await.unwrap().to_string());
/// # })
/// ```
///
pub async fn create_edit(&self, args: edits::EditArguments) -> Result<edits::EditResponse> {
let mut url = BASE_URL.clone();
url.set_path("/v1/edits");
let res = self
.req_client
.post(url)
.bearer_auth(&self.key)
.json(&args)
.send()
.await?;
if res.status() == 200 {
Ok(res.json::<edits::EditResponse>().await?)
} else {
Err(anyhow!(res.text().await?))
}
}
/// Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
///
/// See <https://platform.openai.com/docs/api-reference/embeddings>
///
/// ```no_run
/// # use openai_rust;
/// # use tokio_test;
/// # tokio_test::block_on(async {
/// # let api_key = "";
/// let c = openai_rust::Client::new(api_key);
/// let args = openai_rust::embeddings::EmbeddingsArguments::new("text-embedding-ada-002", "The food was delicious and the waiter...".to_owned());
/// println!("{:?}", c.create_embeddings(args).await.unwrap().data);
/// # })
/// ```
///
pub async fn create_embeddings(
&self,
args: embeddings::EmbeddingsArguments,
) -> Result<embeddings::EmbeddingsResponse> {
let mut url = BASE_URL.clone();
url.set_path("/v1/embeddings");
let res = self
.req_client
.post(url)
.bearer_auth(&self.key)
.json(&args)
.send()
.await?;
if res.status() == 200 {
Ok(res.json::<embeddings::EmbeddingsResponse>().await?)
} else {
Err(anyhow!(res.text().await?))
}
}
}