1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
use serde::{Serialize, Deserialize};
/// Request arguments for embeddings.
///
/// See <https://platform.openai.com/docs/api-reference/embeddings/create>.
///
/// ```
/// openai_rust::embeddings::EmbeddingsArguments::new(
/// "text-embedding-ada-002",
/// "The food was delicious and the waiter...".to_owned(),
/// );
/// ```
#[derive(Serialize, Debug, Clone)]
pub struct EmbeddingsArguments {
/// ID of the model to use. You can use the [List models](crate::Client::list_models) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
pub model: String,
/// Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. Each input must not exceed the max input tokens for the model (8191 tokens for `text-embedding-ada-002`). [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb) for counting tokens.
pub input: String,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
impl EmbeddingsArguments {
pub fn new(model: impl AsRef<str>, input: String) -> EmbeddingsArguments {
EmbeddingsArguments {
model: model.as_ref().to_owned(),
input,
user: None
}
}
}
/// The response of an embeddings request.
#[derive(Deserialize, Debug, Clone)]
pub struct EmbeddingsResponse {
pub data: Vec<EmbeddingsData>,
pub model: String,
pub usage: Usage,
}
/// The data from an embeddings request.
#[derive(Deserialize, Debug, Clone)]
pub struct EmbeddingsData {
pub embedding: Vec<f32>,
pub index: usize,
}
/// Token usage information for an [EmbeddingsResponse].
#[derive(Deserialize, Debug, Clone)]
pub struct Usage {
pub prompt_tokens: u32,
pub total_tokens: u32,
}