1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
use serde::{Deserialize, Serialize};
/// Request arguments for chat completion.
///
/// See <https://platform.openai.com/docs/api-reference/chat/create>.
///
/// ```
/// let args = openai_rust::chat::ChatArguments::new("gpt-3.5-turbo", vec![
/// openai_rust::chat::Message {
/// role: "user".to_owned(),
/// content: "Hello GPT!".to_owned(),
/// }
/// ]);
/// ```
///
/// To use streaming, use [crate::Client::create_chat_stream].
///
#[derive(Serialize, Debug, Clone)]
pub struct ChatArguments {
/// ID of the model to use. See the model [endpoint compatibility table](https://platform.openai.com/docs/models/model-endpoint-compatibility) for details on which models work with the Chat API.
pub model: String,
/// The [Message]s to generate chat completions for
pub messages: Vec<Message>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature `but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
/// How many chat completion choices to generate for each input message.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u32>,
/// Whether to stream back partial progress.
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) stream: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<String>,
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
///
/// The total length of input tokens and generated tokens is limited by the model's context length.
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>,
// logit_bias
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
impl ChatArguments {
pub fn new(model: impl AsRef<str>, messages: Vec<Message>) -> ChatArguments {
ChatArguments {
model: model.as_ref().to_owned(),
messages,
temperature: None,
top_p: None,
n: None,
stream: None,
stop: None,
max_tokens: None,
presence_penalty: None,
frequency_penalty: None,
user: None,
}
}
}
/// This is the response of a chat.
///
/// It implements [Display](std::fmt::Display) as a shortcut to easily extract the content.
/// ```
/// # use serde_json;
/// # let json = "{
/// # \"id\": \"chatcmpl-123\",
/// # \"object\": \"chat.completion\",
/// # \"created\": 1677652288,
/// # \"choices\": [{
/// # \"index\": 0,
/// # \"message\": {
/// # \"role\": \"assistant\",
/// # \"content\": \"\\n\\nHello there, how may I assist you today?\"
/// # },
/// # \"finish_reason\": \"stop\"
/// # }],
/// # \"usage\": {
/// # \"prompt_tokens\": 9,
/// # \"completion_tokens\": 12,
/// # \"total_tokens\": 21
/// # }
/// # }";
/// # let res = serde_json::from_str::<openai_rust::chat::ChatResponse>(json).unwrap();
/// let msg = &res.choices[0].message.content;
/// // or
/// let msg = res.to_string();
/// ```
#[derive(Deserialize, Debug, Clone)]
pub struct ChatResponse {
pub id: String,
pub created: u32,
pub choices: Vec<Choice>,
pub usage: Usage
}
impl std::fmt::Display for ChatResponse {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", &self.choices[0].message.content)?;
Ok(())
}
}
/// Structs and deserialization method for the responses
/// when using streaming chat responses.
pub mod stream {
use serde::Deserialize;
use bytes::Bytes;
use anyhow::Context;
use std::str;
/// This is the partial chat result received when streaming.
///
/// It implements [Display](std::fmt::Display) as a shortcut to easily extract the content.
/// ```
/// # use serde_json;
/// # let json = "{
/// # \"id\": \"chatcmpl-6yX67cSCIAm4nrNLQUPOtJu9JUoLG\",
/// # \"object\": \"chat.completion.chunk\",
/// # \"created\": 1679884927,
/// # \"model\": \"gpt-3.5-turbo-0301\",
/// # \"choices\": [
/// # {
/// # \"delta\": {
/// # \"content\": \" today\"
/// # },
/// # \"index\": 0,
/// # \"finish_reason\": null
/// # }
/// # ]
/// # }";
/// # let res = serde_json::from_str::<openai_rust::chat::stream::ChatResponseEvent>(json).unwrap();
/// let msg = &res.choices[0].delta.content;
/// // or
/// let msg = res.to_string();
/// ```
#[derive(Deserialize, Debug, Clone)]
pub struct ChatResponseEvent {
pub id: String,
pub created: u32,
pub model: String,
pub choices: Vec<Choice>,
}
impl std::fmt::Display for ChatResponseEvent {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.choices[0].delta.content.as_ref().unwrap_or(&"".into()))?;
Ok(())
}
}
/// Choices for [ChatResponseEvent].
#[derive(Deserialize, Debug, Clone)]
pub struct Choice {
pub delta: ChoiceDelta,
pub index: u32,
pub finish_reason: Option<String>,
}
/// Additional data from [Choice].
#[derive(Deserialize, Debug, Clone)]
pub struct ChoiceDelta {
pub content: Option<String>,
}
/// Used for deserializing the event stream
pub(crate) fn deserialize_chat_events(body: Result<Bytes, reqwest::Error>)-> Result<Vec<ChatResponseEvent>, anyhow::Error>{
let body = body?;
let data = str::from_utf8(&body)?.to_owned();
// All events are in the form of data: {...}
// Except the last event which is always in the form of data: [DONE]
let events = data.split("\n\n");
let mut responses = vec![];
for event in events {
if event.is_empty() {break};
// Remove the 'data: ' to make it valid JSON
let str = event.strip_prefix("data: ").context("Unexpected response format")?;
if str == "[DONE]" {
break
}
responses.push(serde_json::from_str::<ChatResponseEvent>(&str)?);
}
Ok(responses)
}
}
/// Infomration about the tokens used by [ChatResponse].
#[derive(Deserialize, Debug, Clone)]
pub struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,
pub total_tokens: u32,
}
/// Completion choices from [ChatResponse].
#[derive(Deserialize, Debug, Clone)]
pub struct Choice {
pub index: u32,
pub message: Message,
pub finish_reason: String
}
/// A message.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct Message {
pub role: String,
pub content: String
}
/// Role of a [Message].
pub enum Role {
System,Assistant,User
}