1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
use std::collections::HashMap;
use serde::{Deserialize, Serialize};
/// Request arguments for completions.
///
/// See <https://platform.openai.com/docs/api-reference/completions/create>.
///
/// ```
/// let args = openai_rust::completions::CompletionArguments::new(
/// "text-davinci-003",
/// "The quick brown fox".to_owned()
/// );
/// ```
#[derive(Serialize, Debug, Clone)]
pub struct CompletionArguments {
/// ID of the model to use.
/// You can use the [List models](crate::Client::list_models) API to see all of your available models,
/// or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
pub model: String,
#[serde(skip_serializing_if = "Option::is_none")]
/// The prompt(s) to generate completions for,
/// encoded as a string, array of strings, array of tokens,
/// or array of token arrays.
///
/// Defaults to <|endoftext|>.
///
/// Note that <|endoftext|> is the document separator that the model
/// sees during training, so if a prompt is not specified the model
/// will generate as if from the beginning of a new document.
pub prompt: Option<String>,
/// The suffix that comes after a completion of inserted text.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>,
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length.
/// Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
/// What sampling temperature to use, between 0 and 2.
/// Higher values like 0.8 will make the output more random,
/// while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p probability mass.
/// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
/// How many completions to generate for each prompt.
///
/// *Note:* Because this parameter generates many completions,it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) stream: Option<bool>,
/// Include the log probabilities on the `logprobs` most likely tokens,
/// as well the chosen tokens. For example, if `logprobs` is 5,
/// the API will return a list of the 5 most likely tokens.
/// The API will always return the `logprob` of the sampled token,
/// so there may be up to `logprobs+1` elements in the response.
///
/// The maximum value for `logprobs` is 5.
/// If you need more than this, please contact us through our [Help center](https://help.openai.com/) and describe your use case.
#[serde(skip_serializing_if = "Option::is_none")]
pub logprobs: Option<u8>,
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
pub echo: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<String>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>,
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token).
/// Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
///
/// *Note:* Because this parameter generates many completions,it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of: Option<u32>,
//logit_bias
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
impl CompletionArguments {
pub fn new(model: impl AsRef<str>, prompt: String) -> CompletionArguments {
CompletionArguments {
model: model.as_ref().to_owned(),
prompt: Some(prompt),
suffix: None,
max_tokens: None,
temperature: None,
top_p: None,
n: None,
stream: None,
logprobs: None,
echo: None,
stop: None,
presence_penalty: None,
frequency_penalty: None,
best_of: None,
user: None,
}
}
}
/// The repsonse of a completion request.
/// ```ignore
/// let text = res.choices[0].text;
/// ```
#[derive(Deserialize, Debug)]
pub struct CompletionResponse {
pub id: String,
pub created: u32,
pub model: String,
pub choices: Vec<Choice>,
}
/// The completion choices of a completion response.
#[derive(Deserialize, Debug)]
pub struct Choice {
pub text: String,
pub index: u32,
pub logprobs: Option<LogProbs>,
pub finish_reason: String,
}
/// The log probabilities of a completion response.
#[derive(Deserialize, Debug)]
pub struct LogProbs {
pub tokens: Vec<String>,
pub token_logprobs: Vec<f32>,
pub top_logprobs: Vec<HashMap<String, f32>>,
pub text_offset: Vec<u32>,
}
/*
{
"logprobs": {
"tokens": [
"\"",
"\n",
"\n",
"The",
" quick",
" brown",
" fox",
" jumped",
" over",
" the",
" lazy",
" dog",
"."
],
"token_logprobs": [
-3.4888523,
-0.081398554,
-0.27080205,
-0.010607235,
-0.03842781,
-0.00033003604,
-0.00006468596,
-0.8200931,
-0.0002035838,
-0.00010665305,
-0.0003372524,
-0.002368947,
-0.0031320814
],
"top_logprobs": [
{
"\n": -1.016303
},
{
"\n": -0.081398554
},
{
"\n": -0.27080205
},
{
"The": -0.010607235
},
{
" quick": -0.03842781
},
{
" brown": -0.00033003604
},
{
" fox": -0.00006468596
},
{
" jumps": -0.58238596
},
{
" over": -0.0002035838
},
{
" the": -0.00010665305
},
{
" lazy": -0.0003372524
},
{
" dog": -0.002368947
},
{
".": -0.0031320814
}
],
"text_offset": [
13,
14,
15,
16,
19,
25,
31,
35,
42,
47,
51,
56,
60
]
}
}
*/