1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
#![allow(dead_code)]
pub mod list_models {
use serde::Deserialize;
#[derive(Debug, Deserialize)]
pub struct ModelPermission {
id: String,
object: String,
created: i64,
allow_create_engine: bool,
allow_sampling: bool,
allow_logprobs: bool,
allow_search_indices: bool,
allow_view: bool,
allow_fine_tuning: bool,
organization: String,
group: Option<String>,
is_blocking: bool,
}
#[derive(Debug, Deserialize)]
pub struct Model {
id: String,
object: String,
created: i64,
owned_by: String,
permission: Vec<ModelPermission>,
root: String,
parent: Option<String>,
}
#[derive(Debug, Deserialize)]
pub struct ModelList {
object: String,
data: Vec<Model>,
}
}
pub mod edits {
use serde::{Deserialize, Serialize};
#[derive(Debug, Deserialize, Serialize)]
pub struct EditParameters {
/// ID of the model to use. You can use the `text-davinci-edit-001` or `code-davinci-edit-001` model with this endpoint.
model: String,
/// The input text to use as a starting point for the edit.
input: String,
/// The instruction that tells the model how to edit the prompt.
instructions: String,
/// How many edits to generate for the input and instruction.
#[serde(skip_serializing_if = "Option::is_none")]
n_of_edits: Option<i32>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
top_p: Option<f32>,
}
#[derive(Debug, Deserialize)]
pub struct EditResponse {
object: String,
created: i64,
choices: Vec<Choice>,
usage: Usage,
}
#[derive(Debug, Deserialize)]
pub struct Choice {
text: String,
index: i32,
}
#[derive(Debug, Deserialize)]
pub struct Usage {
prompt_tokens: i32,
completion_tokens: i32,
total_tokens: i32,
}
}
pub mod completions {
use serde::{Deserialize, Serialize};
#[derive(Debug, Deserialize, Serialize)]
pub struct CompletionParameters {
/// ID of the model to use. You can use the List models API to see all of your available models,
/// or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
///
/// List models example:
/// ```rust
/// use openai_rs_api::core::{OpenAI, models::list_models::ModelList};
/// use tokio;
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let openai = OpenAI::new("your_api_key", "your_organization_id");
/// let models: ModelList = openai.list_models().await?;
/// println!("{:#?}", models);
/// }
/// ```
///
model: String,
/// The prompt(s) to generate completions for, encoded as a string, array of strings,
/// array of tokens, or array of token arrays.
///
/// Note that <|endoftext|> is the document separator that the model sees during training,
/// so if a prompt is not specified the model will generate as if from the beginning of a new document.
prompt: String,
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length.
/// [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb)
/// for counting tokens.
#[serde(skip_serializing_if = "Option::is_none")]
max_tokens: Option<i32>,
/// What sampling temperature to use, between 0 and 2.
/// Higher values like 0.8 will make the output more random, while lower values
/// like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// The suffix that comes after a completion of inserted text.
#[serde(skip_serializing_if = "Option::is_none")]
suffix: Option<String>,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p probability mass.
/// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
top_p: Option<f32>,
/// How many completions to generate for each prompt.
///
/// Note: Because this parameter generates many completions, it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
n: Option<i32>,
/// Whether to stream back partial progress. If set, tokens
/// will be sent as data-only server-sent events as they become available,
/// with the stream terminated by a `data: [DONE]` message.
/// [Example Python code.](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb)
#[serde(skip_serializing_if = "Option::is_none")]
stream: Option<bool>,
/// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens.
/// For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens.
/// The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
///
/// The maximum value for logprobs is 5.
#[serde(skip_serializing_if = "Option::is_none")]
logprobs: Option<i32>,
/// Up to 4 sequences where the API will stop generating further tokens.
/// The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
stop: Option<String>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether
/// they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency
/// in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
frequency_penalty: Option<f32>,
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
///
/// Note: Because this parameter generates many completions, it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
best_of: Option<i32>,
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer)
/// to an associated bias value from -100 to 100. You can use this [tokenizer tool](https://platform.openai.com/tokenizer?view=bpe)
/// (which works for both GPT-2 and GPT-3) to convert text to token IDs.
/// Mathematically, the bias is added to the logits generated by the model prior to sampling.
/// The exact effect will vary per model, but values between -1 and 1 should decrease or
/// increase likelihood of selection; values like -100 or 100 should result in a ban or
/// exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
#[serde(skip_serializing_if = "Option::is_none")]
logit_bias: Option<serde_json::Value>,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
echo: Option<bool>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct CompletionResponse {
id: String,
object: String,
created: i64,
model: String,
choices: Vec<CompletionChoice>,
usage: Usage,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct CompletionChoice {
text: String,
index: i32,
logprobs: Option<i32>,
finish_reason: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Usage {
prompt_tokens: i32,
completion_tokens: i32,
total_tokens: i32,
}
}
pub mod chat {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct ChatParameters {
/// ID of the model to use. See the
/// [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility) table
/// for details on which models work with the Chat API.
model: String,
/// A list of messages comprising the conversation so far.
messages: Vec<Message>,
/// A list of functions the model may generate JSON inputs for.
#[serde(skip_serializing_if = "Option::is_none")]
functions: Option<Vec<Function>>,
/// Controls how the model responds to function calls. "none" means the model does not call a function,
/// and responds to the end-user. "auto" means the model can pick between an end-user or calling a
/// function. Specifying a particular function via `{"name":\ "my_function"}` forces the model to call
/// that function. "none" is the default when no functions are present. "auto" is the default if functions
/// are present.
#[serde(skip_serializing_if = "Option::is_none")]
function_call: Option<serde_json::Value>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output
/// more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the
/// model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
top_p: Option<f32>,
/// How many chat completion choices to generate for each input message.
#[serde(skip_serializing_if = "Option::is_none")]
n: Option<i32>,
/// If set, partial message deltas will be sent, like in ChatGPT.
/// Tokens will be sent as data-only server-sent events as they become available,
/// with the stream terminated by a `data: [DONE]` message. Example Python code.
#[serde(skip_serializing_if = "Option::is_none")]
stream: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[serde(skip_serializing_if = "Option::is_none")]
stop: Option<Vec<String>>,
/// The maximum number of tokens to generate in the chat completion.
#[serde(skip_serializing_if = "Option::is_none")]
max_tokens: Option<i32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the
/// text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in
/// the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
frequency_penalty: Option<f32>,
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100.
/// Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
/// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or
/// exclusive selection of the relevant token.
#[serde(skip_serializing_if = "Option::is_none")]
logit_bias: Option<serde_json::Value>,
///A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Function {
/// The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes,
/// with a maximum length of 64.
name: String,
/// The description of what the function does.
#[serde(skip_serializing_if = "Option::is_none")]
description: Option<String>,
/// The parameters the functions accepts, described as a JSON Schema object.
/// See the [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for examples,
/// and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for
/// documentation about the format.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "parameters")]
params: Option<serde_json::Value>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ChatResponse {
id: String,
object: String,
created: i64,
choices: Vec<CompletionChoice>,
usage: Usage,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct CompletionChoice {
index: i32,
message: Message,
finish_reason: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Message {
/// The role of the messages author. One of `system`, `user`, `assistant` or `function`.
role: String,
/// The contents of the message. `content` is required for
/// all messages except assistant messages with function calls.
#[serde(skip_serializing_if = "Option::is_none")]
content: Option<String>,
/// The name of the author of this message. `name` is required if role is `function`,
/// and it should be the name of the function whose response is in the `content`.
/// May contain a-z, A-Z, 0-9, and underscores, with a maximum length of 64 characters.
#[serde(skip_serializing_if = "Option::is_none")]
name: Option<String>,
/// The name and arguments of a function that should be called, as generated by the model.
///
///**Now this optional field dont support in this crate.**
#[serde(skip_serializing_if = "Option::is_none")]
function_call: Option<serde_json::Value>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Usage {
prompt_tokens: i32,
completion_tokens: i32,
total_tokens: i32,
}
}
pub mod images {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct ImageCreateParameters {
prompt: String,
/// The number of images to generate. Must be between 1 and 10.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "n")]
num_images: Option<i32>,
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "size")]
image_size: Option<String>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
#[serde(skip_serializing_if = "Option::is_none")]
response_format: Option<String>, // url of b64_json
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ImageEditParameters {
/// The image to edit. Must be a valid PNG file, less than 4MB, and square.
/// If mask is not provided, image must have transparency, which will be used as the mask.
image: String,
/// An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited.
/// Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
#[serde(skip_serializing_if = "Option::is_none")]
mask: Option<String>,
/// A text description of the desired image(s). The maximum length is 1000 characters.
prompt: String,
/// The number of images to generate. Must be between 1 and 10.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "n")]
num_images: Option<i32>,
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "size")]
image_size: Option<String>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
#[serde(skip_serializing_if = "Option::is_none")]
response_format: Option<String>, // url of b64_json
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ImageVariationParameters {
/// The image to edit. Must be a valid PNG file, less than 4MB, and square.
/// If mask is not provided, image must have transparency, which will be used as the mask.
image: String,
/// The number of images to generate. Must be between 1 and 10.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "n")]
num_images: Option<i32>,
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024.
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(rename = "size")]
image_size: Option<String>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
#[serde(skip_serializing_if = "Option::is_none")]
response_format: Option<String>, // url of b64_json
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ImageResponse {
created: usize,
data: Vec<ImageData>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ImageData {
url: String,
}
}
pub mod embeddings {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct EmbeddingParameters {
/// ID of the model to use. You can use the List models API to see all of your available models,
/// or see our Model overview for descriptions of them.
model: String,
///nput text to embed, encoded as a string or array of tokens. To embed multiple
/// inputs in a single request, pass an array of strings or array of token arrays.
/// Each input must not exceed the max input tokens for the model (8191 tokens for text-embedding-ada-002).
input: String,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct EmbeddingResponse {
object: String,
data: Vec<EmbeddingData>,
model: String,
usage: Usage,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct EmbeddingData {
object: String,
embedding: Vec<f32>,
index: i32,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Usage {
prompt_tokens: i32,
total_tokens: i32,
}
}
pub mod audio {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize)]
pub struct TranscriptionParameters {
/// The audio file object (not file name) to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
file: String,
/// ID of the model to use. Only `whisper-1` is currently available.
model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The prompt should match the audio language.
#[serde(skip_serializing_if = "Option::is_none")]
prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
#[serde(skip_serializing_if = "Option::is_none")]
respone_format: Option<String>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2
/// will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature
/// until certain thresholds are hit.
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
#[serde(skip_serializing_if = "Option::is_none")]
language: Option<String>,
}
#[derive(Debug, Serialize)]
pub struct TranslationParameters {
/// The audio file object (not file name) to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
file: String,
/// ID of the model to use. Only `whisper-1` is currently available.
model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The prompt should match the audio language.
#[serde(skip_serializing_if = "Option::is_none")]
prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
/// The default is json.
#[serde(skip_serializing_if = "Option::is_none")]
respone_format: Option<String>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2
/// will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature
/// until certain thresholds are hit.
/// The default is 1.
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
}
#[derive(Debug, Deserialize)]
pub struct TextResponse {
text: String,
}
}
pub mod files {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct FileList {
data: Vec<FileData>,
object: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct FileData {
id: String,
object: String,
bytes: u32,
created_at: u64,
filename: String,
purpose: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct FileUpload {
/// Name of the [JSON Lines](https://jsonlines.readthedocs.io/en/latest/) file to be uploaded.
///
/// If the purpose is set to "fine-tune", each line is a JSON record with "prompt" and "completion"
/// fields representing your [training examples.](https://platform.openai.com/docs/guides/fine-tuning/prepare-training-data)
file: String,
/// The intended purpose of the uploaded documents.
///
/// Use "fine-tune" for Fine-tuning. This allows us to validate the format of the uploaded file.
purpose: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DeleteResponse {
id: String,
object: String,
deleted: bool,
}
}
pub mod fine_tunes {}
pub mod moderations {}