openai/models/create_completion_request.rs
1/*
2 * OpenAI API
3 *
4 * APIs for sampling from and fine-tuning language models
5 *
6 * The version of the OpenAPI document: 1.2.0
7 *
8 * Generated by: https://openapi-generator.tech
9 */
10
11
12
13
14#[derive(Clone, Debug, PartialEq, Default, Serialize, Deserialize)]
15pub struct CreateCompletionRequest {
16 /// ID of the model to use. You can use the [List models](/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](/docs/models/overview) for descriptions of them.
17 #[serde(rename = "model")]
18 pub model: String,
19 #[serde(rename = "prompt", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
20 pub prompt: Option<Option<Box<crate::models::CreateCompletionRequestPrompt>>>,
21 /// The suffix that comes after a completion of inserted text.
22 #[serde(rename = "suffix", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
23 pub suffix: Option<Option<String>>,
24 /// The maximum number of [tokens](/tokenizer) to generate in the completion. The token count of your prompt plus `max_tokens` cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
25 #[serde(rename = "max_tokens", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
26 pub max_tokens: Option<Option<i32>>,
27 /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
28 #[serde(rename = "temperature", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
29 pub temperature: Option<Option<f32>>,
30 /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both.
31 #[serde(rename = "top_p", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
32 pub top_p: Option<Option<f32>>,
33 /// How many completions to generate for each prompt. **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
34 #[serde(rename = "n", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
35 pub n: Option<Option<i32>>,
36 /// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available, with the stream terminated by a `data: [DONE]` message.
37 #[serde(rename = "stream", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
38 pub stream: Option<Option<bool>>,
39 /// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response. The maximum value for `logprobs` is 5. If you need more than this, please contact us through our [Help center](https://help.openai.com) and describe your use case.
40 #[serde(rename = "logprobs", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
41 pub logprobs: Option<Option<i32>>,
42 /// Echo back the prompt in addition to the completion
43 #[serde(rename = "echo", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
44 pub echo: Option<Option<bool>>,
45 #[serde(rename = "stop", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
46 pub stop: Option<Option<Box<crate::models::CreateCompletionRequestStop>>>,
47 /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. [See more information about frequency and presence penalties.](/docs/api-reference/parameter-details)
48 #[serde(rename = "presence_penalty", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
49 pub presence_penalty: Option<Option<f32>>,
50 /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. [See more information about frequency and presence penalties.](/docs/api-reference/parameter-details)
51 #[serde(rename = "frequency_penalty", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
52 pub frequency_penalty: Option<Option<f32>>,
53 /// Generates `best_of` completions server-side and returns the \"best\" (the one with the highest log probability per token). Results cannot be streamed. When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`. **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
54 #[serde(rename = "best_of", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
55 pub best_of: Option<Option<i32>>,
56 /// Modify the likelihood of specified tokens appearing in the completion. Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. As an example, you can pass `{\"50256\": -100}` to prevent the <|endoftext|> token from being generated.
57 #[serde(rename = "logit_bias", default, with = "::serde_with::rust::double_option", skip_serializing_if = "Option::is_none")]
58 pub logit_bias: Option<Option<serde_json::Value>>,
59 /// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](/docs/guides/safety-best-practices/end-user-ids).
60 #[serde(rename = "user", skip_serializing_if = "Option::is_none")]
61 pub user: Option<String>,
62}
63
64impl CreateCompletionRequest {
65 pub fn new(model: String) -> CreateCompletionRequest {
66 CreateCompletionRequest {
67 model,
68 prompt: None,
69 suffix: None,
70 max_tokens: None,
71 temperature: None,
72 top_p: None,
73 n: None,
74 stream: None,
75 logprobs: None,
76 echo: None,
77 stop: None,
78 presence_penalty: None,
79 frequency_penalty: None,
80 best_of: None,
81 logit_bias: None,
82 user: None,
83 }
84 }
85}
86
87