1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
use proc_macro::TokenStream;
use quote::{format_ident, quote, ToTokens};
use syn::{parse_macro_input, Data, DeriveInput, Ident, Lit};
use tiktoken_rs::cl100k_base;

/// A derive procedural macro for the `EnumDescriptor` trait.
///
/// The `EnumDescriptor` trait should have a function `name_with_token_count`
/// that returns a tuple with the name of the enum type as a string and the
/// token count for the name as an `usize`.
///
/// This procedural macro generates an implementation of `EnumDescriptor` for
/// the type on which it's applied. The `name_with_token_count` function, in the
/// generated implementation, returns the name of the type and its token count.
///
/// # Usage
///
/// Use the `#[derive(EnumDescriptor)]` attribute on an enum to derive the
/// `EnumDescriptor` trait for it.
///
/// ```
/// #[derive(EnumDescriptor)]
/// enum MyEnum {
///     Variant1,
///     Variant2,
/// }
/// ```
///
/// This will generate:
///
/// ```
/// impl EnumDescriptor for MyEnum {
///     fn name_with_token_count() -> (String, usize) {
///         (String::from("MyEnum"), /* token count of "MyEnum" */)
///     }
/// }
/// ```
///
/// The actual token count is computed during compile time using the
/// `calculate_token_count` function.
#[proc_macro_derive(EnumDescriptor)]
pub fn enum_descriptor_derive(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);

    let name = &input.ident;
    let name_str = format!("{}", name);

    let token_count = calculate_token_count(&name_str);

    let expanded = quote! {
        impl EnumDescriptor for #name {
            fn name_with_token_count() -> (String, usize) {
                (String::from(#name_str), #token_count)
            }
        }
    };

    TokenStream::from(expanded)
}

/// A derive procedural macro for the `VariantDescriptors` trait.
///
/// This macro generates an implementation of the `VariantDescriptors` trait for
/// an enum. The trait provides two methods:
///
/// 1. `variant_names_with_token_counts`: Returns a `Vec` containing tuples,
/// each with a string representation of a variant's name and its token count.
///
/// 2. `variant_name_with_token_count`: Takes an enum variant as input and
/// returns a tuple with the variant's name as a string and its token count.
///
/// Note: This macro will panic if it is used on anything other than an enum.
///
/// # Usage
///
/// ```
/// #[derive(VariantDescriptors)]
/// enum MyEnum {
///     Variant1,
///     Variant2,
/// }
/// ```
///
/// This will generate the following:
///
/// ```
/// impl VariantDescriptors for MyEnum {
///     fn variant_names_with_token_counts() -> Vec<(String, usize)> {
///         vec![
///             (String::from("Variant1"), /* token count of "Variant1" */),
///             (String::from("Variant2"), /* token count of "Variant2" */),
///         ]
///     }
///
///     fn variant_name_with_token_count(&self) -> (String, usize) {
///         match self {
///             Self::Variant1 => (String::from("Variant1"), /* token count of "Variant1" */),
///             Self::Variant2 => (String::from("Variant2"), /* token count of "Variant2" */),
///         }
///     }
/// }
/// ```
///
/// The actual token count is computed during compile time using the
/// `calculate_token_count` function.
#[proc_macro_derive(VariantDescriptors)]
pub fn variant_descriptors_derive(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let enum_name = &ast.ident;

    let variants = if let syn::Data::Enum(ref e) = ast.data {
        e.variants
            .iter()
            .map(|v| {
                let variant_name = &v.ident;
                let token_count = calculate_token_count(&variant_name.to_string());

                (variant_name, token_count)
            })
            .collect::<Vec<_>>()
    } else {
        panic!("VariantDescriptors can only be used with enums");
    };

    let variant_names_with_token_counts: Vec<_> = variants
        .iter()
        .map(|(variant_name, token_count)| {
            quote! { (stringify!(#variant_name).to_string(), #token_count) }
        })
        .collect();

    let variant_name_with_token_count: Vec<_> = variants
        .iter()
        .map(|(variant_name, token_count)| {
            quote! { Self::#variant_name => (stringify!(#variant_name).to_string(), #token_count) }
        })
        .collect();

    let expanded = quote! {
        impl VariantDescriptors for #enum_name {
            fn variant_names_with_token_counts() -> Vec<(String, usize)> {
                vec![
                    #(#variant_names_with_token_counts),*
                ]
            }

            fn variant_name_with_token_count(&self) -> (String, usize) {
                match self {
                    #(#variant_name_with_token_count,)*
                }
            }
        }
    };

    TokenStream::from(expanded)
}

/// A procedural macro to generate information about an enum.
///
/// This macro generates code that uses the `EnumDescriptor` and `VariantDescriptors`
/// traits to extract information about an enum, including its name, variant names,
/// and their corresponding token counts. Additionally, it uses the `FunctionArgument` trait
/// to fetch the argument description. All this information is serialized into JSON.
///
/// The macro returns a tuple containing the JSON and the total token count.
///
/// # Usage
///
/// ```rust
/// #[generate_enum_info]
/// enum MyEnum {
///     Variant1,
///     Variant2,
/// }
/// ```
///
/// The generated code will look like this:
///
/// ```rust
/// {
///     use serde_json::Value;
///     let mut total_tokens = 0;
///
///     let (arg_desc, arg_count) = <MyEnum as ::openai_func_enums::FunctionArgument>::argument_description_with_token_count();
///     total_tokens += arg_count;
///
///     let enum_name = <MyEnum as EnumDescriptor>::name_with_token_count();
///     total_tokens += enum_name.1;
///     total_tokens += enum_name.1;
///
///     let enum_variants = <MyEnum as VariantDescriptors>::variant_names_with_token_counts();
///     total_tokens += enum_variants.iter().map(|(_, token_count)| *token_count).sum::<usize>();
///
///     let json_enum = serde_json::json!({
///         enum_name.0: {
///             "type": "string",
///             "enum": enum_variants.iter().map(|(name, _)| name.clone()).collect::<Vec<_>>(),
///             "description": arg_desc,
///         }
///     });
///
///     total_tokens += 11;
///
///     (json_enum, total_tokens)
/// }
/// ```
///
/// Note: It is assumed that the enum implements the `EnumDescriptor`, `VariantDescriptors`, and `FunctionArgument` traits.
/// The actual token count is computed during compile time using these traits' methods.
#[proc_macro]
pub fn generate_enum_info(input: TokenStream) -> TokenStream {
    let enum_ident = parse_macro_input!(input as Ident);

    // When this is consumed by the function that creates the overall function,
    // we are going to be requiring all the arguments, which means we will repeat
    // their names in the "required" part of openai's function schema. So we will
    // count the tokens associated with this enum name twice here.
    let output = quote! {
        {
            use serde_json::Value;
            let mut total_tokens = 0;

            let (arg_desc, arg_count) = <#enum_ident as ::openai_func_enums::FunctionArgument>::argument_description_with_token_count();
            total_tokens += arg_count;

            let enum_name = <#enum_ident as EnumDescriptor>::name_with_token_count();
            total_tokens += enum_name.1;
            total_tokens += enum_name.1;

            let enum_variants = <#enum_ident as VariantDescriptors>::variant_names_with_token_counts();
            total_tokens += enum_variants.iter().map(|(_, token_count)| *token_count).sum::<usize>();

            let json_enum = serde_json::json!({
                enum_name.0: {
                    "type": "string",
                    "enum": enum_variants.iter().map(|(name, _)| name.clone()).collect::<Vec<_>>(),
                    "description": arg_desc,
                }
            });

            total_tokens += 11;

            (json_enum, total_tokens)
        }
    };

    output.into()
}

/// This procedural macro attribute is used to specify a description for an enum variant.
///
/// The `func_description` attribute does not modify the input it is given.
/// It's only used to attach metadata (i.e., a description) to enum variants.
///
/// # Usage
///
/// ```rust
/// #[func_description]
/// enum MyEnum {
///     Variant1,
///     Variant2,
/// }
/// ```
///
/// Note: The actual usage of the description provided through this attribute happens
/// in the `FunctionCallResponse` derive macro and is retrieved in the `impl_function_call_response` function.
#[proc_macro_attribute]
pub fn func_description(_args: TokenStream, input: TokenStream) -> TokenStream {
    input
}

/// This procedural macro derives the `FunctionCallResponse` trait for an enum.
///
/// The derive macro expects an enum and it generates a new struct for each variant of the enum.
/// The generated struct is named by appending "Response" to the variant's name. Each struct has the same fields as the variant.
/// Also, a `name`, `to_function_call` and `get_function_json` method is implemented for each struct.
///
/// In the `get_function_json` method, any description provided through the `func_description` attribute is used.
///
/// # Usage
///
/// ```rust
/// #[derive(FunctionCallResponse)]
/// #[func_description]
/// enum MyEnum {
///     Variant1,
///     Variant2,
/// }
/// ```
///
/// Note: This macro can only be applied to enums and it requires the `func_description` attribute to be applied to the enum.
#[proc_macro_derive(FunctionCallResponse, attributes(func_description))]
pub fn derive_function_call_response(input: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(input).unwrap();

    let gen = impl_function_call_response(&ast);

    gen.into()
}

/// This function generates a `FunctionCallResponse` implementation for each variant of an enum.
///
/// For each enum variant, it creates a new struct with the same fields as the variant and also
/// generates `name`, `to_function_call`, and `get_function_json` methods for the struct.
///
/// In the `get_function_json` method, it utilizes the description provided through the `func_description` attribute.
///
/// This function is used by the `FunctionCallResponse` derive macro.
fn impl_function_call_response(ast: &DeriveInput) -> proc_macro2::TokenStream {
    match &ast.data {
        Data::Enum(enum_data) => {
            let mut generated_structs = Vec::new();
            let mut json_generator_functions = Vec::new();

            for variant in &enum_data.variants {
                let variant_name = &variant.ident;
                let struct_name = format_ident!("{}Response", variant_name);

                let mut description = String::new();
                let mut desc_tokens = 0_usize;

                for attr in &variant.attrs {
                    if attr.path().is_ident("func_description") {
                        let attribute_parsed = attr.parse_nested_meta(|meta| {
                            let content = meta.input;

                            while !content.is_empty() {
                                if meta.path.is_ident("description") {
                                    let value = meta.value()?;
                                    if let Ok(Lit::Str(value)) = value.parse() {
                                        description = value.value();
                                    }
                                } else if meta.path.is_ident("tokens") {
                                    let value = meta.value()?;
                                    if let Ok(Lit::Int(value)) = value.parse() {
                                        desc_tokens = value.base10_parse::<usize>()?;
                                        return Ok(());
                                    }
                                }

                                return Ok(());
                            }
                            Err(meta.error("unrecognized my_attribute"))
                        });
                        match attribute_parsed {
                            Ok(_attribute_parsed) => {}
                            Err(e) => {
                                println!("Error parsing attribute:   {:#?}", e);
                            }
                        }
                    }
                }

                let fields: Vec<_> = variant
                    .fields
                    .iter()
                    .map(|f| {
                        let field_name =
                            format_ident!("{}", to_snake_case(&f.ty.to_token_stream().to_string()));
                        let field_type = &f.ty;
                        quote! {
                            pub #field_name: #field_type,
                        }
                    })
                    .collect();

                let field_info: Vec<_> = variant
                    .fields
                    .iter()
                    .map(|f| {
                        let field_type = &f.ty;
                        quote! {
                            generate_enum_info!(#field_type)
                        }
                    })
                    .collect();

                json_generator_functions.push(quote! {
                    impl #struct_name {
                        pub fn name() -> String {
                            stringify!(#struct_name).to_string()
                        }

                        pub fn to_function_call() -> ChatCompletionFunctionCall {
                            let function_call_json = json!({
                                "name": stringify!(#struct_name)
                            });

                            ChatCompletionFunctionCall::Object(function_call_json)
                        }

                        pub fn get_function_json() -> (Value, usize) {
                            let mut parameters = serde_json::Map::new();
                            let mut total_tokens = 0;
                            for (arg_json, arg_tokens) in vec![#(#field_info),*] {
                                total_tokens += arg_tokens;
                                parameters.insert(
                                    arg_json.as_object().unwrap().keys().next().unwrap().clone(),
                                    arg_json
                                        .as_object()
                                        .unwrap()
                                        .values()
                                        .next()
                                        .unwrap()
                                        .clone(),
                                );
                            }

                            let function_json = json!({
                                "name": stringify!(#struct_name),
                                "description": #description,
                                "parameters": {
                                    "type": "object",
                                    "properties": parameters,
                                    "required": parameters.keys().collect::<Vec<_>>()
                                }
                            });

                            total_tokens += 12;
                            total_tokens += #desc_tokens;

                            (function_json, total_tokens)
                        }
                    }
                });

                generated_structs.push(quote! {
                    #[derive(serde::Deserialize, Debug)]
                    #[serde(rename_all = "PascalCase")]
                    pub struct #struct_name {
                        #(#fields)*
                    }
                });
            }

            let gen = quote! {
                #(#generated_structs)*

                #(#json_generator_functions)*

            };

            return gen.into();
        }
        _ => panic!("FunctionCallResponse can only be derived for enums"),
    }
}

/// Calculate the token count of a given text string using the Byte Pair Encoding (BPE) tokenizer.
///
/// This function utilizes the BPE tokenizer from the `cl100k_base` library. It tokenizes the given text and
/// returns the count of the tokens. This can be used to measure how many tokens a particular text string
/// consumes, which is often relevant in the context of natural language processing tasks.
///
/// # Arguments
///
/// * `text` - A string slice that holds the text to tokenize.
///
/// # Returns
///
/// * `usize` - The count of tokens in the text.
///
/// # Example
///
/// ```
/// let text = "Hello, world!";
/// let token_count = calculate_token_count(text);
/// println!("Token count: {}", token_count);
/// ```
///
/// Note: This function can fail if the `cl100k_base` tokenizer is not properly initialized or the text cannot be tokenized.
fn calculate_token_count(text: &str) -> usize {
    let bpe = cl100k_base().unwrap();
    bpe.encode_ordinary(&text).len()
}

/// Convert a camelCase or PascalCase string into a snake_case string.
///
/// This function iterates over each character in the input string. If the character is an uppercase letter, it adds an
/// underscore before it (except if it's the first character) and then appends the lowercase version of the character
/// to the output string.
///
/// # Arguments
///
/// * `camel_case` - A string slice that holds the camelCase or PascalCase string to convert.
///
/// # Returns
///
/// * `String` - The converted snake_case string.
///
/// # Examplejj
///
/// ```
/// let camel_case = "HelloWorld";
/// let snake_case = to_snake_case(camel_case);
/// assert_eq!(snake_case, "hello_world");
/// ```
fn to_snake_case(camel_case: &str) -> String {
    let mut snake_case = String::new();
    for (i, ch) in camel_case.char_indices() {
        if i > 0 && ch.is_uppercase() {
            snake_case.push('_');
        }
        snake_case.extend(ch.to_lowercase());
    }
    snake_case
}