openai_api_rs/v1/
embedding.rs
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::option::Option;
use crate::impl_builder_methods;
#[derive(Debug, Deserialize, Serialize)]
pub struct EmbeddingData {
pub object: String,
pub embedding: Vec<f32>,
pub index: i32,
}
#[derive(Debug, Serialize, Deserialize, Clone)]
#[serde(rename_all = "lowercase")]
pub enum EncodingFormat {
Float,
Base64,
}
#[derive(Debug, Serialize, Clone, Deserialize)]
pub struct EmbeddingRequest {
pub model: String,
pub input: Vec<String>,
pub encoding_format: Option<EncodingFormat>,
#[serde(skip_serializing_if = "Option::is_none")]
pub dimensions: Option<i32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
impl EmbeddingRequest {
pub fn new(model: String, input: Vec<String>) -> Self {
Self {
model,
input,
encoding_format: None,
dimensions: None,
user: None,
}
}
}
impl_builder_methods!(
EmbeddingRequest,
user: String
);
#[derive(Debug, Deserialize, Serialize)]
pub struct EmbeddingResponse {
pub object: String,
pub data: Vec<EmbeddingData>,
pub model: String,
pub usage: Usage,
pub headers: Option<HashMap<String, String>>,
}
#[derive(Debug, Deserialize, Serialize)]
pub struct Usage {
pub prompt_tokens: i32,
pub total_tokens: i32,
}