use serde::{Deserialize, Serialize};
use crate::impl_builder_methods;
#[derive(Debug, Serialize, Clone)]
pub struct CreateFineTuneRequest {
pub training_file: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub n_epochs: Option<i32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub batch_size: Option<i32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub learning_rate_multiplier: Option<f32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub prompt_loss_weight: Option<f32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub compute_classification_metrics: Option<bool>,
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_n_classes: Option<i32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_positive_class: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_betas: Option<Vec<f32>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>,
}
impl CreateFineTuneRequest {
pub fn new(training_file: String) -> Self {
Self {
training_file,
validation_file: None,
model: None,
n_epochs: None,
batch_size: None,
learning_rate_multiplier: None,
prompt_loss_weight: None,
compute_classification_metrics: None,
classification_n_classes: None,
classification_positive_class: None,
classification_betas: None,
suffix: None,
}
}
}
impl_builder_methods!(
CreateFineTuneRequest,
validation_file: String,
model: String,
n_epochs: i32,
batch_size: i32,
learning_rate_multiplier: f32,
prompt_loss_weight: f32,
compute_classification_metrics: bool,
classification_n_classes: i32,
classification_positive_class: String,
classification_betas: Vec<f32>,
suffix: String
);
#[derive(Debug, Deserialize)]
pub struct CreateFineTuneResponse {
pub id: String,
pub object: String,
pub model: String,
pub created_at: i64,
pub events: Vec<FineTuneEvent>,
pub fine_tuned_model: Option<FineTunedModel>,
pub hyperparams: HyperParams,
pub organization_id: String,
pub result_files: Vec<ResultFile>,
pub status: String,
pub validation_files: Vec<ValidationFile>,
pub training_files: Vec<TrainingFile>,
pub updated_at: i64,
}
#[derive(Debug, Deserialize)]
pub struct FineTuneEvent {
pub object: String,
pub created_at: i64,
pub level: String,
pub message: String,
}
#[derive(Debug, Deserialize)]
pub struct FineTunedModel {
pub id: String,
pub object: String,
pub model_details: ModelDetails,
}
#[derive(Debug, Deserialize)]
pub struct ModelDetails {
pub architecture: String,
pub created_at: i64,
pub id: String,
pub object: String,
pub prompt: String,
pub samples_seen: i64,
}
#[derive(Debug, Deserialize)]
pub struct HyperParams {
pub batch_size: i32,
pub learning_rate_multiplier: f32,
pub n_epochs: i32,
pub prompt_loss_weight: f32,
}
#[derive(Debug, Deserialize)]
pub struct ResultFile {
pub id: String,
pub object: String,
pub bytes: i64,
pub created_at: i64,
pub filename: String,
pub purpose: String,
}
#[derive(Debug, Deserialize)]
pub struct ValidationFile {
pub id: String,
pub object: String,
pub bytes: i64,
pub created_at: i64,
pub filename: String,
pub purpose: String,
}
#[derive(Debug, Deserialize)]
pub struct TrainingFile {
pub id: String,
pub object: String,
pub bytes: i64,
pub created_at: i64,
pub filename: String,
pub purpose: String,
}
#[derive(Debug, Deserialize)]
pub struct ListFineTuneResponse {
pub object: String,
pub data: Vec<FineTuneData>,
}
#[derive(Debug, Deserialize)]
pub struct FineTuneData {
pub id: String,
pub object: String,
pub model: String,
pub created_at: u64,
pub fine_tuned_model: Option<String>,
pub hyperparams: HyperParams,
pub organization_id: String,
pub result_files: Vec<ResultFile>,
pub status: String,
pub validation_files: Vec<ValidationFile>,
pub training_files: Vec<TrainingFile>,
pub updated_at: u64,
}
#[derive(Debug, Deserialize)]
pub struct RetrieveFineTuneRequest {
pub fine_tune_id: String,
}
impl RetrieveFineTuneRequest {
pub fn new(fine_tune_id: String) -> Self {
Self { fine_tune_id }
}
}
#[derive(Debug, Deserialize)]
pub struct RetrieveFineTuneResponse {
pub id: String,
pub object: String,
pub model: String,
pub created_at: i64,
pub events: Vec<FineTuneEvent>,
pub fine_tuned_model: Option<FineTunedModel>,
pub hyperparams: HyperParams,
pub organization_id: String,
pub result_files: Vec<ResultFile>,
pub status: String,
pub validation_files: Vec<ValidationFile>,
pub training_files: Vec<TrainingFile>,
pub updated_at: i64,
}
#[derive(Debug, Deserialize, Serialize)]
pub struct CancelFineTuneRequest {
pub fine_tune_id: String,
}
impl CancelFineTuneRequest {
pub fn new(fine_tune_id: String) -> Self {
Self { fine_tune_id }
}
}
#[derive(Debug, Deserialize)]
pub struct CancelFineTuneResponse {
pub id: String,
pub object: String,
pub model: String,
pub created_at: i64,
pub events: Vec<FineTuneEvent>,
pub fine_tuned_model: Option<String>,
pub hyperparams: HyperParams,
pub organization_id: String,
pub result_files: Vec<ResultFile>,
pub status: String,
pub validation_files: Vec<ValidationFile>,
pub training_files: Vec<TrainingFile>,
pub updated_at: i64,
}
#[derive(Debug, Deserialize)]
pub struct ListFineTuneEventsRequest {
pub fine_tune_id: String,
}
impl ListFineTuneEventsRequest {
pub fn new(fine_tune_id: String) -> Self {
Self { fine_tune_id }
}
}
#[derive(Debug, Deserialize)]
pub struct ListFineTuneEventsResponse {
pub object: String,
pub data: Vec<FineTuneEvent>,
}
#[derive(Debug, Deserialize)]
pub struct DeleteFineTuneModelRequest {
pub model_id: String,
}
impl DeleteFineTuneModelRequest {
pub fn new(model_id: String) -> Self {
Self { model_id }
}
}
#[derive(Debug, Deserialize)]
pub struct DeleteFineTuneModelResponse {
pub id: String,
pub object: String,
pub deleted: bool,
}