open_hypergraphs/array/traits.rs
1//! The operations which an array type must support to implement open hypergraphs
2use core::fmt::Debug;
3use core::ops::{Add, Sub};
4use core::ops::{Bound, Range, RangeBounds};
5
6use num_traits::{One, Zero};
7
8/// Array *kinds*.
9/// For example, [`super::vec::VecKind`] is the set of types [`Vec<T>`] for all `T`.
10pub trait ArrayKind: Sized {
11 /// The type of arrays containing elements type T
12 type Type<T>;
13
14 /// The type of index *elements*. For [`super::vec::VecKind`], this is [`usize`].
15 type I: Clone
16 + PartialEq
17 + Ord
18 + Debug
19 + One
20 + Zero
21 + Add<Output = Self::I>
22 + Sub<Output = Self::I>
23 // NOTE: this last constraint that an index can add with rhs an Index array is a hack that
24 // lets us implement `tensor` for finite functions without unnecessary cloning.
25 + for<'a> Add<&'a Self::Index, Output = Self::Index>;
26
27 /// Arrays of indices (isomorphic to `Type<I>`) must implement NaturalArray
28 type Index: NaturalArray<Self>
29 + Into<Self::Type<Self::I>>
30 + From<Self::Type<Self::I>>
31 + AsRef<Self::Type<Self::I>>
32 + AsMut<Self::Type<Self::I>>
33 + PartialEq;
34
35 /// a `Slice` is a read-only view into another array's data.
36 /// For `VecKind` this is `&[T]`.
37 type Slice<'a, T: 'a>; // part of an array
38}
39
40/// Arrays of elements T for some [`ArrayKind`] `K`.
41///
42/// # Panics
43///
44/// Any operation using an index out of range for the given array will panic.
45pub trait Array<K: ArrayKind, T>: Clone {
46 /// The empty array
47 fn empty() -> Self;
48
49 /// Length of an array
50 fn len(&self) -> K::I;
51
52 /// Test if an array is empty
53 fn is_empty(&self) -> bool {
54 self.len() == K::I::zero()
55 }
56
57 fn from_slice(slice: K::Slice<'_, T>) -> Self;
58
59 /// Clamp any `R: RangeBounds<K::I>` into the range of valid indices for this array.
60 fn to_range<R: RangeBounds<K::I>>(&self, r: R) -> Range<K::I> {
61 let n = self.len();
62 let start = match r.start_bound().cloned() {
63 Bound::Included(i) => i,
64 Bound::Excluded(i) => i + K::I::one(),
65 Bound::Unbounded => K::I::zero(),
66 };
67
68 // NOTE: Range is *exclusive* of end, so for Included(i) we need to increment!.
69 let end = match r.end_bound().cloned() {
70 Bound::Included(i) => i + K::I::one(),
71 Bound::Excluded(i) => i,
72 Bound::Unbounded => n,
73 };
74
75 Range { start, end }
76 }
77
78 /// Concatenate two arrays
79 fn concatenate(&self, other: &Self) -> Self;
80
81 /// `fill(x, n)` returns the array length n containing repeated element x.
82 fn fill(x: T, n: K::I) -> Self;
83
84 /// Retrieve a single element by its index.
85 fn get(&self, i: K::I) -> T;
86
87 /// Get a contiguous range of the underlying array as a slice.
88 fn get_range<R: RangeBounds<K::I>>(&self, rb: R) -> K::Slice<'_, T>;
89
90 /// Write to a contiguous range of data in an array
91 fn set_range<R: RangeBounds<K::I>>(&mut self, rb: R, v: &K::Type<T>); // mutate self
92
93 /// Gather elements of this array according to the indices.
94 /// <https://en.wikipedia.org/wiki/Gather/scatter_(vector_addressing)#Gather>
95 /// ```text
96 /// x = self.gather(idx) // equivalent to x[i] = self[idx[i]]
97 /// ```
98 fn gather(&self, idx: K::Slice<'_, K::I>) -> Self;
99
100 /// Scatter elements of `self` into a new array at indices `idx`.
101 /// ```text
102 /// x = self.scatter(idx) // equivalent to x[idx[i]] = self[i]
103 /// ```
104 ///
105 /// # Panics
106 ///
107 /// If there is any `i ≥ n` in `idx`
108 fn scatter(&self, idx: K::Slice<'_, K::I>, n: K::I) -> Self;
109
110 fn scatter_assign(&mut self, ixs: &K::Index, values: Self);
111
112 /// Numpy `self[ixs] = arg`
113 fn scatter_assign_constant(&mut self, ixs: &K::Index, arg: T);
114}
115
116pub trait OrdArray<K: ArrayKind, T>: Clone + Array<K, T> {
117 /// Produce an array of indices which sorts `self`.
118 /// That is, `self.gather(self.argsort())` is monotonic.
119 fn argsort(&self) -> K::Index;
120
121 /// Sort this array by the given keys
122 ///
123 /// ```rust
124 /// use open_hypergraphs::array::{*, vec::*};
125 /// let values = VecArray(vec![10, 20, 30, 40]);
126 /// let keys = VecArray(vec![3, 1, 0, 2]);
127 /// let expected = VecArray(vec![30, 20, 40, 10]);
128 /// let actual = values.sort_by(&keys);
129 /// assert_eq!(expected, actual);
130 /// ```
131 fn sort_by(&self, key: &Self) -> Self {
132 self.gather(key.argsort().get_range(..))
133 }
134}
135
136/// Arrays of natural numbers.
137/// This is used for computing with *indexes* and *sizes*.
138pub trait NaturalArray<K: ArrayKind>:
139 OrdArray<K, K::I> + Sized + Sub<Self, Output = Self> + Add<Self, Output = Self> + AsRef<K::Index>
140{
141 fn max(&self) -> Option<K::I>;
142
143 /// An inclusive-and-exclusive cumulative sum
144 /// For an input of size `N`, returns an array `x` of size `N+1` where `x[0] = 0` and `x[-1] = sum(x)`
145 fn cumulative_sum(&self) -> Self;
146
147 // NOTE: we can potentially remove this if IndexedCoproduct moves to using pointers instead of
148 // segment sizes.
149 #[must_use]
150 fn sum(&self) -> K::I {
151 if self.len() == K::I::zero() {
152 K::I::zero()
153 } else {
154 self.cumulative_sum().get(self.len())
155 }
156 }
157
158 /// Indices from start to stop
159 ///
160 /// ```rust
161 /// use open_hypergraphs::array::{*, vec::*};
162 /// let x0 = VecArray::arange(&0, &3);
163 /// assert_eq!(x0, VecArray(vec![0, 1, 2]));
164 ///
165 /// let x1 = VecArray::arange(&0, &0);
166 /// assert_eq!(x1, VecArray(vec![]));
167 /// ```
168 fn arange(start: &K::I, stop: &K::I) -> Self;
169
170 /// Repeat each element of the given slice.
171 /// self and x must be equal lengths.
172 fn repeat(&self, x: K::Slice<'_, K::I>) -> Self;
173
174 /// Compute the arrays (self%denominator, self/denominator)
175 ///
176 /// # Panics
177 ///
178 /// When d == 0.
179 fn quot_rem(&self, d: K::I) -> (Self, Self);
180
181 /// Compute `self * c + x`, where `c` is a constant (scalar) and `x` is an array.
182 ///
183 /// # Panics
184 ///
185 /// When self.len() != x.len().
186 fn mul_constant_add(&self, c: K::I, x: &Self) -> Self;
187
188 /// Compute the connected components of a graph with `n` nodes.
189 /// Edges are stored as a pair of arrays of nodes `(sources, targets)`
190 /// meaning that for each `i` there is an edge `sources[i] → targets[i]`.
191 ///
192 /// Since `n` is the number of nodes in the graph, the values in `sources` and `targets` must
193 /// be less than `n`.
194 ///
195 /// # Returns
196 ///
197 /// Returns a pair `(cc_ix, k)`, where `cc_ix[i]` is the connected component for the `i`th
198 /// node, and `k` is the total number of components.
199 ///
200 /// # Panics
201 ///
202 /// * Inequal lengths: `sources.len() != targets.len()`
203 /// * Indexes are out of bounds: `sources[i] >= n` or `targets[i] >= n`.
204 fn connected_components(sources: &Self, targets: &Self, n: K::I) -> (Self, K::I);
205
206 /// Segmented sum of input.
207 /// For example, for `self = [1 2 0]`,
208 /// `self.segmented_sum([1 | 2 3]) = [1 5 0]`.
209 ///
210 /// # Panics
211 ///
212 /// When `self.sum() != x.len()`
213 fn segmented_sum(&self, x: &Self) -> Self {
214 let segment_sizes = self;
215
216 // cumulative sum of segments, including total size (last element)
217 // [ 2 4 ] → [ 0 2 6 ]
218 let ptr = segment_sizes.cumulative_sum();
219
220 // Cumulative sum of values
221 // [ 1 2 3 4 5 6 ] → [ 0 1 3 6 10 15 21 ]
222 let sum = x.cumulative_sum();
223
224 // total number of pointers (num segments + 1)
225 let n = ptr.len();
226
227 // NOTE: we do two allocations for both `gather`s here, but avoiding this
228 // would require complicating the API quite a bit!
229 sum.gather(ptr.get_range(K::I::one()..)) - sum.gather(ptr.get_range(..n - K::I::one()))
230 }
231
232 /// Given an array of *sizes* compute the concatenation of `arange` arrays of each size.
233 ///
234 /// ```rust
235 /// use open_hypergraphs::array::{*, vec::*};
236 /// let x = VecArray::<usize>(vec![2, 3, 0, 5]);
237 /// let y = VecArray::<usize>(vec![0, 1, 0, 1, 2, 0, 1, 2, 3, 4]);
238 /// assert_eq!(x.segmented_arange(), y)
239 /// ```
240 ///
241 /// Default implementation has time complexity:
242 ///
243 /// - Sequential: `O(n)`
244 /// - PRAM CREW: `O(log n)`
245 fn segmented_arange(&self) -> Self {
246 // How this works, by example:
247 // input = [ 2 3 0 5 ]
248 // output = [ 0 1 | 0 1 2 | | 0 1 2 3 4 ]
249 // compute ptrs
250 // p = [ 0 2 5 5 ]
251 // r = [ 0 0 | 2 2 2 | | 5 5 5 5 5 ]
252 // i = [ 0 1 2 3 4 5 6 7 8 9 ]
253 // i - r = [ 0 1 | 0 1 2 | | 0 1 2 3 4 ]
254 // Note: r is computed as repeat(p, n)
255 //
256 // Complexity
257 // O(n) sequential
258 // O(log n) PRAM CREW (cumsum is log n)
259 let p = self.cumulative_sum();
260 let last_idx = p.len() - K::I::one();
261 let sum = p.get(last_idx.clone());
262
263 let r = self.repeat(p.get_range(..last_idx));
264 let i = Self::arange(&K::I::zero(), &sum);
265 i - r
266 }
267
268 /// Count occurrences of each value in the range [0, size)
269 fn bincount(&self, size: K::I) -> K::Index;
270
271 /// Compute index of unique values and their counts
272 fn sparse_bincount(&self) -> (K::Index, K::Index);
273
274 /// Return indices of elements which are zero
275 fn zero(&self) -> K::Index;
276
277 /// Compute `self[ixs] -= rhs`
278 fn scatter_sub_assign(&mut self, ixs: &K::Index, rhs: &K::Index);
279}