open_hypergraphs/strict/layer.rs
1//! A [Coffman-Graham](https://en.wikipedia.org/wiki/Coffman%E2%80%93Graham_algorithm)-inspired
2//! layering algorithm.
3use crate::array::*;
4use crate::category::*;
5use crate::finite_function::*;
6use crate::indexed_coproduct::*;
7
8use crate::strict::open_hypergraph::*;
9
10use num_traits::{One, Zero};
11
12/// Compute a *layering* of an [`OpenHypergraph`]: a mapping `layer : X → K` from operations to
13/// integers compatible with the partial ordering on `X` induced by hypergraph structure.
14///
15/// See also: the [Coffman-Graham Algorithm](https://en.wikipedia.org/wiki/Coffman%E2%80%93Graham_algorithm)
16///
17/// # Returns
18///
19/// - A finite function `layer : X → L` assigning a *layer* to each operation in the set `X`
20/// - An array of *flags* for each operation determining if it was visited in the layering. If any
21/// operation was unvisited, the hypergraph was not monogamous acyclic.
22pub fn layer<K: ArrayKind, O, A>(f: &OpenHypergraph<K, O, A>) -> (FiniteFunction<K>, K::Type<K::I>)
23where
24 K::Type<A>: Array<K, A>,
25 K::Type<K::I>: NaturalArray<K>,
26{
27 let a = operation_adjacency(f);
28 let (ordering, completed) = kahn(&a);
29 (
30 FiniteFunction::new(ordering, f.h.x.0.len()).unwrap(),
31 completed,
32 )
33}
34
35/// Given an [`OpenHypergraph`], compute a layering of its operations as a finite function `X → L`,
36/// then return this as an array-of-arrays `r`.
37///
38/// # Returns
39///
40/// - A `Vec` of arrays `r`, where `r[i]` is the array of operations in layer `i`.
41/// - An array of unvisited nodes, as in [`layer`]
42pub fn layered_operations<K: ArrayKind, O, A>(
43 f: &OpenHypergraph<K, O, A>,
44) -> (Vec<K::Index>, K::Index)
45where
46 K::Type<A>: Array<K, A>,
47 K::Type<K::I>: NaturalArray<K>,
48 K::I: Into<usize>,
49{
50 let (order, unvisited) = layer(f);
51 (converse_iter(order).collect(), unvisited.into())
52}
53
54/// A kahn-ish algorithm for topological sorting of an adjacency relation, encoded as an
55/// [`IndexedCoproduct`] (see [`converse`] for details)
56fn kahn<K: ArrayKind>(
57 adjacency: &IndexedCoproduct<K, FiniteFunction<K>>,
58) -> (K::Index, K::Type<K::I>)
59where
60 K::Type<K::I>: NaturalArray<K>,
61{
62 // The layering assignment to each node.
63 // A mutable array of length n with values in {0..n}
64 let mut order: K::Type<K::I> = K::Type::<K::I>::fill(K::I::zero(), adjacency.len());
65
66 // Predicate determining if a node has been visited.
67 // 1 = unvisited
68 // 0 = visited
69 // NOTE: we store this as "NOT visited" so we can efficiently filter using "repeat".
70 let mut unvisited: K::Type<K::I> = K::Type::<K::I>::fill(K::I::one(), adjacency.len());
71
72 // Indegree of each node.
73 let mut indegree = indegree(adjacency);
74
75 // the set of nodes on the frontier, initialized to those with zero indegree.
76 let mut frontier: K::Index = zero(&indegree);
77
78 // Loop until frontier is empty, or at max possible layering depth.
79 let mut depth = K::I::zero();
80
81 // Implementation outline:
82 // 1. Compute *sparse* relative indegree, which is:
83 // - idxs of reachable nodes
84 // - counts of reachability from a given set
85 // 2. Subtract from global indegree array using scatter_sub_assign
86 // - scatter_sub_assign::<K>(&mut indegree.table, &reachable_ix, &reachable_count.table);
87 // 3. Compute new frontier:
88 // - Numpy-esque: `reachable_ix[indegree[reachable_ix] == 0 && unvisited[reachable_ix]]`
89 while !frontier.is_empty() && depth <= adjacency.len() {
90 // Mark nodes in the current frontier as visited
91 // unvisited[frontier] = 0;
92 unvisited.scatter_assign_constant(&frontier, K::I::zero());
93
94 // Set the order of nodes in the frontier to the current depth.
95 // order[frontier] = depth;
96 order.scatter_assign_constant(&frontier, depth.clone());
97
98 // For each node, compute the number of incoming edges from nodes in the frontier,
99 // and count paths to each.
100 let (reachable_ix, reachable_count) = sparse_relative_indegree(
101 adjacency,
102 &FiniteFunction::new(frontier, adjacency.len()).unwrap(),
103 );
104
105 // indegree = indegree - dense_relative_indegree(a, f)
106 indegree
107 .table
108 .as_mut()
109 .scatter_sub_assign(&reachable_ix.table, &reachable_count.table);
110
111 // Reachable nodes with zero indegree...
112 // frontier = reachable_ix[indegree[reachable_ix] == 0]
113 frontier = {
114 // *indices* i of reachable_ix such that indegree[reachable_ix[i]] == 0
115 let reachable_ix_indegree_zero_ix = indegree
116 .table
117 .gather(reachable_ix.table.get_range(..))
118 .zero();
119
120 // only nodes in reachable_ix with indegree 0
121 reachable_ix
122 .table
123 .gather(reachable_ix_indegree_zero_ix.get_range(..))
124 };
125
126 // .. and filter out those which have been visited.
127 // frontier = frontier[unvisited[frontier]]
128 frontier = filter::<K>(
129 &frontier,
130 &unvisited.as_ref().gather(frontier.get_range(..)),
131 );
132
133 // Increment depth
134 depth = depth + K::I::one();
135 }
136
137 (order.into(), unvisited)
138}
139
140/// Given:
141///
142/// - `values : K → N`
143/// - `predicate : K → 2`
144///
145/// Return the subset of `values` for which `predicate(i) = 1`
146fn filter<K: ArrayKind>(values: &K::Index, predicate: &K::Index) -> K::Index {
147 predicate.repeat(values.get_range(..))
148}
149
150/// Given an array of indices `values` in `{0..N}` and a predicate `N → 2`, select select values `i` for
151/// which `predicate(i) = 1`.
152#[allow(dead_code)]
153fn filter_by_dense<K: ArrayKind>(values: &K::Index, predicate: &K::Index) -> K::Index
154where
155 K::Type<K::I>: NaturalArray<K>,
156{
157 predicate
158 .gather(values.get_range(..))
159 .repeat(values.get_range(..))
160}
161
162////////////////////////////////////////////////////////////////////////////////
163// Graph methods
164
165/// Using the adjacency information in `adjacency`, compute the indegree of all nodes reachable from `f`.
166///
167/// More formally, let:
168///
169/// - `a : Σ_{n ∈ A} s(n) → N` denote the adjacency information of each
170/// - `f : K → N` be a subset of `K` nodes
171///
172/// Then `sparse_relative_indegree(a, f)` computes:
173///
174/// - `g : R → N`, the subset of (R)eachable nodes reachable from `f`
175/// - `i : R → E+1`, the *indegree* of nodes in `R`.
176///
177fn sparse_relative_indegree<K: ArrayKind>(
178 a: &IndexedCoproduct<K, FiniteFunction<K>>,
179 f: &FiniteFunction<K>,
180) -> (FiniteFunction<K>, FiniteFunction<K>)
181where
182 K::Type<K::I>: NaturalArray<K>,
183{
184 // Must have that the number of nodes `adjacency.len()`
185 assert_eq!(a.len(), f.target());
186
187 // Indices of operations reachable from those in the set f.
188 // Indices may appear more than once.
189 let g = a.indexed_values(f).unwrap();
190 let (i, c) = g.table.sparse_bincount();
191 let target = a.len() + K::I::one();
192
193 (
194 FiniteFunction::new(i, a.len()).unwrap(),
195 FiniteFunction::new(c, target).unwrap(),
196 )
197}
198
199/// Using the adjacency information in `adjacency`, compute the indegree of all nodes reachable from `f`.
200///
201/// More formally, define:
202///
203/// ```text
204/// a : Σ_{n ∈ A} s(n) → N // the adjacency information of each
205/// f : K → N // a subset of `K` nodes
206/// ```
207///
208/// Then `dense_relative_indegree(a, f)` computes the indegree from `f` of all `N` nodes.
209///
210/// # Returns
211///
212/// A finite function `N → E+1` denoting indegree of each node in `N` relative to `f`.
213fn dense_relative_indegree<K: ArrayKind>(
214 adjacency: &IndexedCoproduct<K, FiniteFunction<K>>,
215 f: &FiniteFunction<K>,
216) -> FiniteFunction<K>
217where
218 K::Type<K::I>: NaturalArray<K>,
219{
220 // Must have that the number of nodes `adjacency.len()`
221 assert_eq!(adjacency.len(), f.target());
222
223 // Operations reachable from those in the set f.
224 let reached = adjacency.indexed_values(f).unwrap();
225
226 // target is +1 because all edges could point to the same operation, so its indegree will be
227 // adjacency.len().
228 let target = adjacency.len() + K::I::one();
229 let table = (reached.table.as_ref() as &K::Type<K::I>).bincount(adjacency.len());
230 FiniteFunction::new(table, target).unwrap()
231}
232
233/// Compute indegree of all nodes in a multigraph.
234pub fn indegree<K: ArrayKind>(
235 adjacency: &IndexedCoproduct<K, FiniteFunction<K>>,
236) -> FiniteFunction<K>
237where
238 K::Type<K::I>: NaturalArray<K>,
239{
240 // Indegree is *relative* indegree with respect to all nodes.
241 // PERFORMANCE: can compute this more efficiently by just bincounting adjacency directly.
242 dense_relative_indegree(adjacency, &FiniteFunction::<K>::identity(adjacency.len()))
243}
244
245/// Return the adjacency map for an [`OpenHypergraph`] `f`.
246///
247/// If `X` is the finite set of operations in `f`, then `operation_adjacency(f)` computes the
248/// indexed coproduct `adjacency : X → X*`, where the list `adjacency(x)` is all operations reachable in
249/// a single step from operation `x`.
250pub fn operation_adjacency<K: ArrayKind, O, A>(
251 f: &OpenHypergraph<K, O, A>,
252) -> IndexedCoproduct<K, FiniteFunction<K>>
253where
254 K::Type<K::I>: NaturalArray<K>,
255{
256 f.h.t.flatmap(&converse(&f.h.s))
257}
258
259/// Compute the *converse* of an [`IndexedCoproduct`] thought of as a "multirelation".
260///
261/// An [`IndexedCoproduct`] `c : Σ_{x ∈ X} s(x) → Q` can equivalently be thought of as `c : X →
262/// Q*`, i.e. a mapping from X to finite lists of elements in Q.
263///
264/// Such a list defines a (multi-)relation as the multiset of pairs
265///
266/// `R = { ( x, f(x)_i ) | x ∈ X, i ∈ len(f(x)) }`
267///
268/// This function computes the *converse* of that relation as an indexed coproduct
269/// `converse(c) : Q → X*`, or more precisely
270/// `converse(c) : Σ_{q ∈ Q} s(q) → X`.
271///
272/// NOTE: An indexed coproduct does not uniquely represent a 'multirelation', since *order* of the
273/// elements matters.
274/// The result of this function is only unique up to permutation of the sublists.
275pub fn converse<K: ArrayKind>(
276 r: &IndexedCoproduct<K, FiniteFunction<K>>,
277) -> IndexedCoproduct<K, FiniteFunction<K>>
278where
279 K::Type<K::I>: NaturalArray<K>,
280{
281 // Create the 'values' array of the resulting [`IndexedCoproduct`]
282 // Sort segmented_arange(r.sources.table) by the *values* of r.
283 let values_table = {
284 let arange = K::Index::arange(&K::I::zero(), &r.sources.len());
285 let unsorted_values = r.sources.table.repeat(arange.get_range(..));
286 unsorted_values.sort_by(&r.values.table)
287 };
288
289 // Create the "sources" array of the result
290 let sources_table =
291 (r.values.table.as_ref() as &K::Type<K::I>).bincount(r.values.target.clone());
292
293 let sources = FiniteFunction::new(sources_table, r.values.table.len() + K::I::one()).unwrap();
294 let values = FiniteFunction::new(values_table, r.len()).unwrap();
295
296 IndexedCoproduct::new(sources, values).unwrap()
297}
298
299/// Given a FiniteFunction `X → L`, compute its converse,
300/// a relation `r : L → X*`, and return the result as an array of arrays,
301/// where `r_i` is the list of elements in `X` mapping to i.
302pub fn converse_iter<K: ArrayKind>(order: FiniteFunction<K>) -> impl Iterator<Item = K::Index>
303where
304 K::Type<K::I>: NaturalArray<K>,
305 K::I: Into<usize>,
306{
307 let c = converse(&IndexedCoproduct::elements(order));
308 c.into_iter().map(|x| x.table)
309}
310
311////////////////////////////////////////////////////////////////////////////////
312// Array trait helpers
313
314// FiniteFunction helpers
315fn zero<K: ArrayKind>(f: &FiniteFunction<K>) -> K::Index
316where
317 K::Type<K::I>: NaturalArray<K>,
318{
319 (f.table.as_ref() as &K::Type<K::I>).zero()
320}