1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// OPCUA for Rust
// SPDX-License-Identifier: MPL-2.0
// Copyright (C) 2017-2020 Adam Lock

//! Asymmetric encryption / decryption, signing / verification wrapper.
use std::{
    self,
    fmt::{Debug, Formatter},
    result::Result,
};

use openssl::{hash, pkey, rsa, sign};

use opcua_types::status_code::StatusCode;

#[derive(Copy, Clone, Debug)]
pub enum RsaPadding {
    PKCS1,
    OAEP,
    PSS
}

impl Into<rsa::Padding> for RsaPadding {
    fn into(self) -> rsa::Padding {
        match self {
            RsaPadding::PKCS1 => rsa::Padding::PKCS1,
            RsaPadding::OAEP => rsa::Padding::PKCS1_OAEP,
            RsaPadding::PSS => rsa::Padding::PKCS1_PSS
        }
    }
}

/// This is a wrapper around an `OpenSSL` asymmetric key pair. Since openssl 0.10, the PKey is either
/// a public or private key so we have to differentiate that as well.
pub struct PKey<T> {
    pub(crate) value: pkey::PKey<T>,
}

/// A public key
pub type PublicKey = PKey<pkey::Public>;
// A private key
pub type PrivateKey = PKey<pkey::Private>;

impl<T> Debug for PKey<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        // This impl will not write out the key, but it exists to keep structs happy
        // that contain a key as a field
        write!(f, "[pkey]")
    }
}

pub trait KeySize {
    fn bit_length(&self) -> usize;

    fn size(&self) -> usize { self.bit_length() / 8 }

    fn calculate_cipher_text_size(&self, data_size: usize, padding: RsaPadding) -> usize {
        let plain_text_block_size = self.plain_text_block_size(padding);
        let block_count = if data_size % plain_text_block_size == 0 {
            data_size / plain_text_block_size
        } else {
            (data_size / plain_text_block_size) + 1
        };
        block_count * self.cipher_text_block_size()
    }

    fn plain_text_block_size(&self, padding: RsaPadding) -> usize {
        // flen must not be more than RSA_size(rsa) - 11 for the PKCS #1 v1.5 based padding modes,
        // not more than RSA_size(rsa) - 42 for RSA_PKCS1_OAEP_PADDING and exactly RSA_size(rsa)
        // for RSA_NO_PADDING.
        match padding {
            RsaPadding::PKCS1 => self.size() - 11,
            RsaPadding::OAEP => self.size() - 42,
            RsaPadding::PSS => panic!(), // PSS is for signing not encryption
        }
    }

    fn cipher_text_block_size(&self) -> usize {
        self.size()
    }
}

impl KeySize for PrivateKey {
    /// Length in bits
    fn bit_length(&self) -> usize {
        self.value.bits() as usize
    }
}

impl PrivateKey {
    pub fn new(bit_length: u32) -> PrivateKey {
        PKey {
            value: {
                let rsa = rsa::Rsa::generate(bit_length).unwrap();
                pkey::PKey::from_rsa(rsa).unwrap()
            },
        }
    }

    pub fn wrap_private_key(pkey: pkey::PKey<pkey::Private>) -> PrivateKey {
        PrivateKey { value: pkey }
    }

    pub fn from_pem(pem: &[u8]) -> Result<PrivateKey, ()> {
        pkey::PKey::private_key_from_pem(pem)
            .map(|value| PKey { value })
            .map_err(|_| {
                error!("Cannot produce a private key from the data supplied");
            })
    }

    pub fn private_key_to_pem(&self) -> Result<Vec<u8>, ()> {
        self.value.private_key_to_pem_pkcs8()
            .map_err(|_| {
                error!("Cannot turn private key to PEM");
            })
    }

    /// Creates a message digest from the specified block of data and then signs it to return a signature
    fn sign(&self, message_digest: hash::MessageDigest, data: &[u8], signature: &mut [u8], padding: RsaPadding) -> Result<usize, StatusCode> {
        trace!("RSA signing");
        if let Ok(mut signer) = sign::Signer::new(message_digest, &self.value) {
            signer.set_rsa_padding(padding.into()).unwrap();
            if signer.update(data).is_ok() {
                return signer.sign_to_vec()
                    .map(|result| {
                        trace!("Signature result, len {} = {:?}, copying to signature len {}", result.len(), result, signature.len());
                        signature.copy_from_slice(&result);
                        result.len()
                    })
                    .map_err(|err| {
                        debug!("Cannot sign data - error = {:?}", err);
                        StatusCode::BadUnexpectedError
                    });
            }
        }
        Err(StatusCode::BadUnexpectedError)
    }

    /// Signs the data using RSA-SHA1
    pub fn sign_hmac_sha1(&self, data: &[u8], signature: &mut [u8]) -> Result<usize, StatusCode> {
        self.sign(hash::MessageDigest::sha1(), data, signature, RsaPadding::PKCS1)
    }

    /// Signs the data using RSA-SHA256
    pub fn sign_hmac_sha256(&self, data: &[u8], signature: &mut [u8]) -> Result<usize, StatusCode> {
        self.sign(hash::MessageDigest::sha256(), data, signature, RsaPadding::PKCS1)
    }

    /// Signs the data using RSA-SHA256-PSS
    pub fn sign_hmac_sha256_pss(&self, data: &[u8], signature: &mut [u8]) -> Result<usize, StatusCode> {
        self.sign(hash::MessageDigest::sha256(), data, signature, RsaPadding::PSS)
    }

    /// Decrypts data in src to dst using the specified padding and returning the size of the decrypted
    /// data in bytes or an error.
    pub fn private_decrypt(&self, src: &[u8], dst: &mut [u8], padding: RsaPadding) -> Result<usize, ()> {
        // decrypt data using our private key
        let cipher_text_block_size = self.cipher_text_block_size();
        let rsa = self.value.rsa().unwrap();
        let rsa_padding: rsa::Padding = padding.into();

        // Decrypt the data
        let mut src_idx = 0;
        let mut dst_idx = 0;

        let src_len = src.len();
        while src_idx < src_len {
            // Decrypt and advance
            dst_idx += {
                let src = &src[src_idx..(src_idx + cipher_text_block_size)];
                let dst = &mut dst[dst_idx..(dst_idx + cipher_text_block_size)];
                rsa.private_decrypt(src, dst, rsa_padding)
                    .map_err(|err| {
                        error!("Decryption failed for key size {}, src idx {}, dst idx {}, padding {:?}, error - {:?}", cipher_text_block_size, src_idx, dst_idx, padding, err);
                    })?
            };
            src_idx += cipher_text_block_size;
        }
        Ok(dst_idx)
    }
}

impl KeySize for PublicKey {
    /// Length in bits
    fn bit_length(&self) -> usize {
        self.value.bits() as usize
    }
}

impl PublicKey {
    pub fn wrap_public_key(pkey: pkey::PKey<pkey::Public>) -> PublicKey {
        PublicKey { value: pkey }
    }

    /// Verifies that the signature matches the hash / signing key of the supplied data
    fn verify(&self, message_digest: hash::MessageDigest, data: &[u8], signature: &[u8], padding: RsaPadding) -> Result<bool, StatusCode> {
        trace!("RSA verifying, against signature {:?}, len {}", signature, signature.len());
        if let Ok(mut verifier) = sign::Verifier::new(message_digest, &self.value) {
            verifier.set_rsa_padding(padding.into()).unwrap();
            if verifier.update(data).is_ok() {
                return verifier.verify(signature)
                    .map(|result| {
                        trace!("Key verified = {:?}", result);
                        result
                    })
                    .map_err(|err| {
                        debug!("Cannot verify key - error = {:?}", err);
                        StatusCode::BadUnexpectedError
                    });
            }
        }
        Err(StatusCode::BadUnexpectedError)
    }

    /// Verifies the data using RSA-SHA1
    pub fn verify_hmac_sha1(&self, data: &[u8], signature: &[u8]) -> Result<bool, StatusCode> {
        self.verify(hash::MessageDigest::sha1(), data, signature, RsaPadding::PKCS1)
    }

    /// Verifies the data using RSA-SHA256
    pub fn verify_hmac_sha256(&self, data: &[u8], signature: &[u8]) -> Result<bool, StatusCode> {
        self.verify(hash::MessageDigest::sha256(), data, signature, RsaPadding::PKCS1)
    }

    /// Verifies the data using RSA-SHA256-PSS
    pub fn verify_hmac_sha256_pss(&self, data: &[u8], signature: &[u8]) -> Result<bool, StatusCode> {
        self.verify(hash::MessageDigest::sha256(), data, signature, RsaPadding::PSS)
    }

    /// Encrypts data from src to dst using the specified padding and returns the size of encrypted
    /// data in bytes or an error.
    pub fn public_encrypt(&self, src: &[u8], dst: &mut [u8], padding: RsaPadding) -> Result<usize, ()> {
        let cipher_text_block_size = self.cipher_text_block_size();
        let plain_text_block_size = self.plain_text_block_size(padding);

        // For reference:
        //
        // https://www.openssl.org/docs/man1.0.2/crypto/RSA_public_encrypt.html
        let rsa = self.value.rsa().unwrap();
        let padding: rsa::Padding = padding.into();

        // Encrypt the data in chunks no larger than the key size less padding
        let mut src_idx = 0;
        let mut dst_idx = 0;

        let src_len = src.len();
        while src_idx < src_len {
            let bytes_to_encrypt = if src_len < plain_text_block_size {
                src_len
            } else if (src_len - src_idx) < plain_text_block_size {
                src_len - src_idx
            } else {
                plain_text_block_size
            };

            // Encrypt data, advance dst index by number of bytes after encrypted
            dst_idx += {
                let src = &src[src_idx..(src_idx + bytes_to_encrypt)];
                let dst = &mut dst[dst_idx..(dst_idx + cipher_text_block_size)];
                rsa.public_encrypt(src, dst, padding)
                    .map_err(|err| {
                        error!("Encryption failed for bytes_to_encrypt {}, key_size {}, src_idx {}, dst_idx {} error - {:?}", bytes_to_encrypt, cipher_text_block_size, src_idx, dst_idx, err);
                    })?
            };

            // Src advances by bytes to encrypt
            src_idx += bytes_to_encrypt;
        }

        Ok(dst_idx)
    }
}