1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/*!
This crate provides object-oriented inheritance using Nodes.

A Node consits of a set of components and a Node can have other
children nodes.

# Defining classes

Use the [`class!`] invocation for defining class.

# Components

```
use oop_inheritance::*;

let something = Node::new();

// Set a component
something.set::<f64>(10);

// `Option<Arc<f64>>`
something.get::<f64>();
```

# Children

```ignore
something.add_child(&another_thing);
```

# Node paths

Since Nodes are in hierarchy, every Node that has a name may be found when
using the `.resolve_path` method. However, there are special segments of an Node path that do not resolve
by name, which may be useful in some contexts:

- `.first` resolves to the first child of an Node;
- `.last` resolves to the last child of an Node;
- `..` resolves to the parent.

```
let last_sibling: Option<Node> = node.resolve_path("../.last");
```
*/

use std::{
    any::Any,
    sync::{Arc, RwLock, Weak},
    hash::Hash, fmt::{Debug, Display}, error::Error,
};

use by_address::ByAddress;

type Component = Arc<dyn Any + Send + Sync>;

#[doc(hidden)]
pub use oop_inheritance_proc::class_extends;

pub use oop_inheritance_proc::class;

pub mod util;

use self::util::VectorExtensions;

fn default<T: Default>() -> T {
    T::default()
}

/// Represents an node as a type managed by reference-counting.
pub struct Node {
    inner: Arc<NodeInner>,
}

impl Debug for Node {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Node")
    }
}

impl Hash for Node {
    /// Hashes the node by reference.
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        ByAddress(Arc::clone(&self.inner)).hash(state)
    }
}

impl PartialEq for Node {
    /// Compares nodes by reference.
    /// > **Note**: This method does not compare the nodes by content.
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.inner, &other.inner)
    }
}

impl Eq for Node {}

impl Clone for Node {
    /// Clones the node by reference.
    /// > **Note**: This method does not clone the node by content.
    fn clone(&self) -> Self {
        Self { inner: Arc::clone(&self.inner) }
    }
}

impl AsRef<Node> for Node {
    fn as_ref(&self) -> &Node {
        self
    }
}

impl Node {
    pub fn new() -> Node {
        Self {
            inner: Arc::new(NodeInner {
                name: RwLock::new(None),
                parent: RwLock::new(default()),
                components: RwLock::new(vec![]),
                children: RwLock::new(vec![]),
            })
        }
    }

    /// Downgrades the node reference into a weak reference.
    pub fn downgrade_ref(&self) -> WeakNodeRef {
        WeakNodeRef(Arc::downgrade(&self.inner))
    }

    /// Checks whether node has a specified component.
    pub fn has<T>(&self) -> bool
        where T: Any + Send + Sync
    {
        self.get::<T>().is_some()
    }

    /// Retrieves a component from the node.
    pub fn get<T>(&self) -> Option<Arc<T>>
        where T: Any + Send + Sync
    {
        for component in self.inner.components.read().unwrap().iter() {
            if let Ok(c) = Arc::downcast::<T>(Arc::clone(component)) {
                return Some(c);
            }
        }
        None
    }

    /// Overrides a component of the node. This method is chainable.
    pub fn set<T>(&self, value: T) -> Self
        where T: Any + Send + Sync
    {
        self.delete::<T>();
        self.inner.components.write().unwrap().push(Arc::new(value));
        self.clone()
    }

    /// Deletes a component of the node.
    /// Returns `true` if any component was deleted;
    /// otherwise returns `false`.
    pub fn delete<T>(&self) -> bool
        where T: Any + Send + Sync
    {
        let mut i = 0;
        let mut components = vec![];
        for component in self.inner.components.read().unwrap().iter() {
            components.push(Arc::clone(component));
        }
        for component in components {
            if Arc::downcast::<T>(Arc::clone(&component)).is_ok() {
                self.inner.components.write().unwrap().remove(i);
                return true;
            }
            i += 1;
        }
        false
    }
    
    pub fn parent(&self) -> Option<Node> {
        self.inner.parent.read().unwrap().upgrade()
    }

    pub fn children(&self) -> Vec<Node> {
        let mut c = vec![];
        for child in self.inner.children.read().unwrap().iter() {
            c.push(child.clone());
        }
        c
    }

    pub fn child_at(&self, index: usize) -> Option<Node> {
        if index < self.num_children() { Some(self.inner.children.read().unwrap()[index].clone()) } else { None }
    }

    /// Returns the number of children.
    pub fn num_children(&self) -> usize {
        self.inner.children.read().unwrap().len()
    }

    fn is_child_of(&self, child: &Node) -> bool {
        if let Some(p) = self.parent() {
            if &p == child {
                return true;
            }
        }
        for i in 0..child.num_children() {
            let child = child.child_at(i).unwrap();
            if self.is_child_of(&child) {
                return true;
            }
        }
        false
    }

    /// Adds a child node to the end of the children collection.
    /// If `child` is already child of an node, it is removed and then added
    /// as part of this node.
    pub fn add_child(&self, child: impl AsRef<Node>) {
        let child = child.as_ref();
        child.remove_from_parent();

        // Do not allow circular children
        assert!(!self.is_child_of(child), "Adding circular child.");

        *child.inner.parent.write().unwrap() = self.downgrade_ref();
        self.inner.children.write().unwrap().push(child.clone());
    }

    /// Adds a child node at the index `index` of the children collection.
    /// If `child` is already child of an node, it is removed and then added
    /// as part of this node.
    /// 
    /// # Panics
    /// 
    /// This method panics if `index` is out of bounds.
    pub fn add_child_at(&self, index: usize, child: impl AsRef<Node>) {
        let child = child.as_ref();
        child.remove_from_parent();
        assert!(index < self.num_children(), "Specified index is out of bounds.");

        // Do not allow circular children
        assert!(!self.is_child_of(child), "Adding circular child.");

        *child.inner.parent.write().unwrap() = self.downgrade_ref();
        self.inner.children.write().unwrap().insert(index, child.clone());
    }

    /// Adds a sequence of children to the end of the children collection.
    /// This is equivalent to iterating the sequence and invoking `add_child()`
    /// with every child.
    pub fn add_children(&self, children: impl IntoIterator<Item = impl AsRef<Node>>) {
        for child in children.into_iter() {
            self.add_child(child.as_ref());
        }
    }

    /// Swaps two children.
    /// 
    /// # Panics
    /// 
    /// Panics if any of the specified nodes is not part of the node.
    pub fn swap_children(&self, child_1: impl AsRef<Node>, child_2: impl AsRef<Node>) {
        let child_1 = child_1.as_ref();
        let child_2 = child_2.as_ref();
        let indices = [self.inner.children.read().unwrap().index_of(child_1), self.inner.children.read().unwrap().index_of(child_2)];
        assert!(indices.iter().all(|i| i.is_some()), "Some of the specified indices are out of bounds.");
        self.inner.children.write().unwrap().swap(indices[0].unwrap(), indices[1].unwrap());
    }

    /// Swaps two children.
    /// 
    /// # Panics
    /// 
    /// Panics if any of the specified indices is out of bounds.
    pub fn swap_children_by_indices(&self, child_1: usize, child_2: usize) {
        assert!([child_1, child_2].iter().all(|&i| i < self.num_children()), "Some of the specified indices are out of bounds.");
        self.inner.children.write().unwrap().swap(child_1, child_2);
    }

    /// Removes a child. Returns `true` if the child has been removed, or `false` otherwise.
    pub fn remove_child(&self, child: impl AsRef<Node>) -> bool {
        let child = child.as_ref();
        let i = self.inner.children.read().unwrap().index_of(child);
        if let Some(i) = i {
            self.inner.children.write().unwrap().remove(i);
            *child.inner.parent.write().unwrap() = default();
            true
        } else {
            false
        }
    }

    /// Removes all children nodes from the node.
    pub fn remove_children(&self) {
        for child in self.children() {
            *child.inner.parent.write().unwrap() = default();
        }
        self.inner.children.write().unwrap().clear();
    }

    /// Removes the node from its parent. Returns `true` if the child has been removed, or `false` otherwise.
    pub fn remove_from_parent(&self) -> bool {
        if let Some(p) = self.parent() { p.remove_child(self) } else { false }
    }

    /// The name of the node as used in Node paths.
    pub fn name(&self) -> Option<String> {
        self.inner.name.read().unwrap().clone()
    }

    /// The name of the node as used in Node paths.
    pub fn set_name(&self, name: Option<String>) {
        *self.inner.name.write().unwrap() = name;
    }

    /**
    Resolves an Node path. An Node path is resolved as follows:

    1. Let *segments* be the splitting of the path by the slash character (`/`).
    2. Let *r* be the initial node.
    3. For every segment *s*:
        1. If `s == ".first"`, let *r* be the first child of *r* or otherwise `None`.
        2. If `s == ".last"`, let *r* be the last child of *r* or otherwise `None`.
        3. If `s == ".."`, let *r* be the parent of *r* or otherwise `None`.
        4. If *s* is non-empty, let *r* be a child of *r* such that `child.name() == s` or otherwise `None`.
    4. Return *r*
    */
    pub fn resolve_path(&self, path: &str) -> Option<Node> {
        let segments = path.split('/');
        let mut r: Option<Node> = Some(self.clone());
        for s in segments {
            if r.is_none() {
                break;
            }
            match s {
                ".first" => {
                    r = r.unwrap().children().first().map(|c| c.clone());
                },
                ".last" => {
                    r = r.unwrap().children().last().map(|c| c.clone());
                },
                ".." => {
                    r = r.unwrap().parent();
                },
                "" => {
                    // Empty
                },
                _ => {
                    r = r.unwrap().children().iter().find(|c| c.name().as_ref().map(|cn| cn.as_ref()) == Some(s)).map(|c| c.clone());
                },
            }
        }
        r
    }

    /// Indicates whether an Node is of a certain Node subtype.
    pub fn is<T: TryFrom<Self, Error = ClassError>>(&self) -> bool {
        T::try_from(self.clone()).is_ok()
    }

    /// Attempts to convert this Node reference into a `T` reference.
    pub fn to<T: TryFrom<Self, Error = ClassError>>(&self) -> Result<T, ClassError> {
        T::try_from(self.clone())
    }
}

struct NodeInner {
    name: RwLock<Option<String>>,
    parent: RwLock<WeakNodeRef>,
    components: RwLock<Vec<Component>>,
    children: RwLock<Vec<Node>>,
}

/// Represents a weak reference to an node.
pub struct WeakNodeRef(Weak<NodeInner>);

impl WeakNodeRef {
    /// Returns a `WeakNodeRef` reference that upgrades to no
    /// strong reference.
    pub fn empty() -> Self {
        Self(Weak::new())
    }

    /// Attempts to upgrade a weak reference into a strong reference.
    pub fn upgrade(&self) -> Option<Node> {
        if let Some(r) = self.0.upgrade() { Some(Node { inner: r }) } else { None }
    }
}

impl Debug for WeakNodeRef {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "WeakNodeRef")
    }
}

impl Default for WeakNodeRef {
    fn default() -> Self {
        Self::empty()
    }
}

impl PartialEq for WeakNodeRef {
    /// Compares nodes by reference.
    fn eq(&self, other: &Self) -> bool {
        Weak::ptr_eq(&self.0, &other.0)
    }
}

impl Eq for WeakNodeRef {}

impl Clone for WeakNodeRef {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

/// Represents an error originated from Node subclass relationships.
/// For example, this error might occur as result of a failed conversion.
pub struct ClassError {
    message: String,
}

impl ClassError {
    pub fn new(message: &str) -> Self {
        Self { message: message.into() }
    }
}

impl Display for ClassError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.message)
    }
}

impl Debug for ClassError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        <Self as Display>::fmt(self, f)
    }
}

impl Error for ClassError {}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_components() {
        let node = Node::new();
        node.set(10.0);
        assert_eq!(10.0, *node.get::<f64>().unwrap());

        node.delete::<f64>();
        assert!(node.get::<f64>().is_none());
    }

    #[test]
    fn test_hierarchy() {
        let topmost = Node::new();
        let child_1 = Node::new();
        child_1.set_name(Some("child1".into()));
        topmost.add_child(&child_1);
        assert_eq!("child1".to_owned(), topmost.resolve_path(".last").unwrap().name().unwrap());
        assert_eq!(topmost.resolve_path(".last").unwrap(), child_1);
    }

    #[test]
    fn test_class_extends() {
        struct A(Node);

        class_extends!(A < Node, use AComponent, crate);
        
        impl A {
            fn new() -> Self {
                Self(Node::new().set(AComponent))
            }
        }

        struct AComponent;

        struct B(A);

        class_extends!(B < A < Node, use BComponent, crate);

        impl B {
            fn new() -> Self {
                Self(A::new().set(BComponent).try_into().unwrap())
            }
        }

        struct BComponent;

        let r = B::new();
        let r_e: Node = r.clone().into();
        let _: A = r.into();
        assert!(r_e.is::<B>());

        let r = Node::new();
        assert!(!r.is::<A>());
    }

    #[test]
    fn test_class() {
        class! {
            use oop_inheritance = crate;
            struct A: Node {
                x: f64 = 0.0,
            }
            fn constructor(x: f64) {
                super();
                this.set_x(x);
            }
        }

        let o = A::new(10.0);
        assert_eq!(o.x(), 10.0);

        class! {
            use oop_inheritance = crate;
            struct B: A < Node {
                y: A = A::new(15.0),
                ref z: f64 = 0.0,
            }
            fn constructor() {
                super(0.0);
            }
        }

        let o = B::new();
        assert_eq!(o.y().x(), 15.0);
    }
}