omics_coordinate/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
//! Coordinates upon a nucleic acid molecule.
//!
//! A **coordinate** is the fundamental unit for describing a location within a
//! genome. Coordinates point to a single location within a contiguous nucleic
//! acid molecule (such as DNA or RNA) and are specified at the _nucleotide_
//! level of abstraction.
//!
//! Coordinates are comprised of three components:
//!
//! * The contiguous molecule upon which the coordinate sits is known as the
//!   [**contig**](crate::Contig).
//! * The offset of the coordinate with respect to the start of the molecule is
//!   known as the [**position**](crate::Position).
//! * Optionally, if the molecule is stranded, the strand upon which the
//!   coordinate sits is known as the [**strand**](crate::Strand).
//!
//! Coordinates, via their positions, can fall within the _interbase_ coordinate
//! system (which is closely related to the 0-based, half-open coordinate
//! system) or the _in-base_ coordinate system (closely related to the 1-based,
//! full-closed coordinate system). If you want to learn more about the
//! supported coordinate systems, or if you want to learn why this crate uses
//! the terms that it does (e.g., "in-base" instead of "1-based"), please jump
//! to [this section](crate#positions) of the docs.
//!
//! ### Quickstart
//!
//! To get started, you'll need to decide if you want to use 0-based or 1-based
//! coordinates. This decision largely depends on your use case, the consumers
//! of the data, and the context of both (a) where input data is coming from and
//! (b) where output data will be shared. Note that, if you're working with a
//! common bioinformatics file format, the coordinate system is often dictated
//! by the format itself. If you need help deciding which coordinate system to
//! use, you should start by reading [the positions section](#positions) of the
//! docs.
//!
//! Once you've decided on which coordinate system you'd like to use, you can
//! create coordinates like so:
//!
//! ```
//! use omics_coordinate::Coordinate;
//! use omics_coordinate::system::One;
//! use omics_coordinate::system::Zero;
//!
//! // An 0-based, interbase coordinate.
//! let coordinate = Coordinate::<Zero>::try_new("seq0", "+", 0)?;
//! println!("{:#}", coordinate);
//!
//! // A 1-based, in-base coordinate.
//! let coordinate = Coordinate::<One>::try_new("seq0", "+", 1)?;
//! println!("{:#}", coordinate);
//!
//! # Ok::<(), Box<dyn std::error::Error>>(())
//! ```
//!
//! For convenience, the crate also provides type aliases for the 0-based and
//! 1-based variants of the relevant concepts. For example, you can use a
//! [`Position<Zero>`] by instead simply importing a
//! [`zero::Position`](crate::position::zero::Position).
//!
//! ```
//! use omics_coordinate::zero::Coordinate;
//!
//! let coordinate = Coordinate::try_new("seq0", "+", 0)?;
//! println!("{:#}", coordinate);
//!
//! # Ok::<(), Box<dyn std::error::Error>>(())
//! ```
//!
//! # Background
//!
//! Coordinate systems can be surprisingly hard to find comprehensive,
//! authoritative material for and, thus, have a reputation for being confusing
//! to newcomers to the field. To address this lack of material and to describe
//! how terms are used within this crate, the authors lay out their
//! understanding of the history behind the terminology used in the community
//! and then cover their perspective on what terms are most appropriate to be
//! used within different contexts. Notably, this may not match the worldview of
//! other popular resources or papers out there. In these cases, departures from
//! convention are noted alongside carefully reasoned opinions on why
//! the departure was made.
//!
//! ## Biology Primer
//!
//! Before diving into the coordinate system-specific details, we must first lay
//! some groundwork for terms used within genomics in general. These definitions
//! serve as a quick overview to orient you to the discussion around coordinate
//! systems—if you're interested in more detailed information, you can learn
//! more at [https://learngenomics.dev](https://learngenomics.dev).
//!
//! * A **genome** is the complete set of genetic code stored within a cell ([learn
//!   more](https://www.genome.gov/genetics-glossary/Genome)).
//! * **Deoxyribose nucleic acid**, or **DNA**, is a molecule that warehouses
//!   the aforementioned genetic code in the nucleus of a cell.
//!     * DNA is stored as a sequence of **nucleotides** (i.e., `A`, `C`, `G`,
//!       and `T`).
//!     * DNA is double-stranded, meaning there are two, complementary sequences
//!       of nucleotides that run in antiparallel.
//! * **Ribonucleic acid**, or **RNA**, is a molecule that is _transcribed_ from
//!   a particular stretch of DNA.
//!     * RNA is _also_ stored as sequence of nucleotides (though, in this case,
//!       the nucleotides are `A`, `C`, `G`, and `U`).
//!     * RNA is single-stranded, meaning that it represents the transcription
//!       of only one of the strands of DNA.
//!      * RNA generally either (a) serves as a template for the production of a
//!        protein or (b) has some functional role in and of itself.
//! * **Proteins** are macromolecules that are assembled by _translating_ the
//!   nucleotide sequence stored with an RNA molecule into a chain of amino
//!   acids. Proteins play a wide variety of roles in the function of a cell.
//!
//! Though there are exceptions to this rule, the core idea is this: through a
//! series of steps described within [the central dogma of molecular
//! biology](https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology), genetic
//! code stored within DNA is commonly transcribed to RNA and either (a) the RNA
//! is used as a template to assemble a functional protein through the process
//! of translation [in the case of _coding_ RNA], or (b) that RNA plays some
//! functional role in and of itself [in the case of _non-coding_ RNA].
//!
//! This crate attempts to provide facilities to effectively describe
//! coordinates within the context of DNA molecules and RNA molecules in the
//! various notations used within the community. We'll start with the most
//! granular concepts (e.g., contigs, positions, and strands) and work our way
//! up to the most broad reaching concepts (e.g., intervals and coordinate
//! systems).
//!
//! ## Contigs
//!
//! Typically, genetic information that constitutes a genome is not stored as a
//! single, contiguous molecule. Instead, genomes are commonly broken up into
//! multiple, contiguous molecules of DNA known as **chromosomes**. Beyond the
//! chromosomes, other sequences, such as the [Epstein–Barr virus][chrEBV], the
//! [mitochondrial genome][chrMT], or decoy sequences are inserted as contigs
//! within a reference genome to serve various purposes. This broader category
//! of contiguous nucleotide sequences are colloquially referred to as
//! "contigs".
//!
//! As we learn more about the human genome, new versions, called **genome
//! builds** are released that describe the known genetic sequence therein. Each
//! contigs contained within a particular genome build is assigned a unique
//! identifier within that build (e.g., `chr1` within the `hg38` genome build).
//! Specifying the contiguous molecule upon which a coordinate is located is the
//! first step in anchoring the coordinate within a genome.
//!
//! For example, the [most recent release][t2t-genome] ([ref][t2t-publication])
//! of the human genome at the time of writing has _exactly_ 24 contigs—these
//! represent the 22 autosomes and the X/Y sex chromosomes present in the human
//! genome. Interestingly, earlier versions of the human genome, such as
//! [GRCh37][grch37-genome] and [GRCh38][grch38-genome], contain more contigs
//! that represent phenomenon such as unplaced sequences (i.e., sequences that
//! we know are located _somewhere_ in the human genome, but we didn't know
//! exactly where when the reference genome was released) and unlocalized
//! sequences (i.e., sequences where we know the chromosome upon which the
//! sequence was located but not the exact position).
//!
//! #### Design Considerations
//!
//! There are no current or planned restrictions on what a contig can be named,
//! as the crate needs to remain able to support all possible use cases. That
//! said, the authors may introduce (optional) convenience methods based on
//! common naming conventions in the future, such as the detection of `chr`
//! prefixes, which is a convention for the naming of chromosomes specifically.
//!
//! ## Positions
//!
//! This section lays out a detailed, conceptual model within which we can
//! compare and contrast the two kinds of positions used within genomic
//! coordinate systems: namely, _in-base_ positions and _interbase_ positions.
//! We then cover how these terms relate to commonly used terms in the community
//! (including a "0-based, half-open coordinate system" and a "1-based,
//! fully-closed coordinate system") and how you can use this crate to flexibly
//! represent a spectrum of locations within a genome.
//!
//! Before we begin, a word of caution—many materials attempt to make the
//! differences between in-base and interbase positions (or the closely related
//! 0-based, half-open and 1-based, fully closed coordinate systems) appear
//! small and unremarkable (e.g., by providing seemingly straightforward
//! formulas to convert between the two). In fact, after a quick scan of these
//! materials, you may even be tempted to view the two systems as simply a
//! difference in accounting and off-by-one hoopla!
//!
//! In the authors' opinion, not only is this not true, it also doesn't serve
//! you well to think of the coordinate systems as anything less than entirely
//! different universes that must be responsibly traversed between. To be clear,
//! we're not suggesting that the existing materials are _wrong_—often, you can
//! follow the conventions laid out, and, as long as the baked-in assumptions
//! are consistently true for your use case, everything will be well. That said,
//! we endeavour to go futher within this crate—to explore the very fabric of
//! these coordinate systems, point out the assumptions made in each coordinate
//! system, and enable you to understand and write code that works across the
//! spectrum of possible position representations.
//!
//! #### In-base and Interbase Positions
//!
//! Positions within a genomic coordinate system can be represented as either
//! _in-base_ positions or _interbase_ positions:
//!
//! * **In-base** positions point directly to and fully encapsulate a
//!   nucleotide. These types of positions are generally considered to be
//!   intuitive from a biological reasoning standpoint and are often used in
//!   contexts where data is reported back to a biological audience (e.g.,
//!   genome browsers and public variant databases). Though we use the term
//!   "in-base" exclusively in this document, these types of positions are also
//!   sometimes referred to as simply "base" positions in the broader community.
//! * **Interbase** positions point to the spaces _between_ nucleotides. These
//!   positions are generally considered to be easier to work with
//!   computationally for a variety of reasons that will become apparent in the
//!   text that follows. It is also possible to unambiguously represent certain
//!   types of variation, such as insertions and structural variant breakpoints,
//!   using interbase positions. As such, interbase positions are commonly used
//!   as the internal representation of positions within bioinformatics tools as
//!   well as in situations where the output is meant to be consumed
//!   computationally (e.g., APIs).
//!
//! For example, SAM files, which are intended to be human-readable, use in-base
//! positions to make themselves more easily interpretable and compatible with
//! genomic databases. Their non-human-readable, binary counterparts, known as
//! BAM files, use interbase positions for the reasons describe aboved. The
//! decision on which coordinate system to use was largely based on the
//! distinction on how the two file types were meant to be consumed (to learn
//! more about what the author of SAM/BAM said about the decision, read the end
//! of [this StackExchange answer](https://bioinformatics.stackexchange.com/a/17757)).
//!
//! #### Conceptual Model
//!
//! Here, we introduce a conceptual model that is useful for comparing and
//! contrasting the two coordinate systems. Under this model, nucleotides and
//! the spaces between them are pulled apart and considered to coexist as
//! independent entities laid out along a discrete axis. Both nucleotides and
//! spaces represent a "slot", and the kind of slot may be distinguished by
//! designating it as a "nucleotide slot" and a "space slot" respectively.
//! Numbered positions are assigned equidistantly at every other slot within
//! either system, but the type of slot where positions are assigned is mutually
//! exclusive between the two systems:
//!
//! * Numbered positions are assigned to each of the nucleotide slots within the
//!   in-base coordinate system.
//! * Numbered positions are assigned to each of the space slots within the
//!   interbase coordinate system.
//!
//! Importantly, in both systems, **only slots with an assigned position can be
//! specified using a position**. This has incredibly important implications on
//! what locations can and cannot be expressed within the two coordinate
//! systems.
//!
//! The diagram below depicts the model applied over a short sequence of seven
//! nucleotides. Each slot has a series of double pipe characters (`║`) that
//! links a slot with its assigned, numbered position (if it exists) within the
//! in-base and interbase coordinate systems. Note that, though the two
//! positions systems are displayed in parallel in the diagram below, that is
//! only so that they can be compared/contrasted more easily. More specifically,
//! **they do not interact with each other in any way**.
//!
//! ```text
//! ========================== seq0 =========================
//! •   G   •   A   •   T   •   A   •   T   •   G   •   A   •
//! ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║
//! ║[--1--]║[--2--]║[--3--]║[--4--]║[--5--]║[--6--]║[--7--]║ In-base Positions
//! 0       1       2       3       4       5       6       7 Interbase Positions
//! ```
//!
//! As was alluded to above, reasoning about the in-base coordinate system under
//! this model is relatively straightforward—if one wants to create a position
//! representing the location of the first nucleotide (`G`), it can be done by
//! simply denoting the numbered position assigned to same slot as the `G`
//! nucleotide, which is position `1`.
//!
//! Creating a position that represents the same nucleotide using the interbase
//! coordinate system is more complicated. Recall that (a) no numbered positions
//! are assigned to nucleotide slots within the interbase coordinate system and
//! (b) only numbered slots may be referenced as a position. As such, referring
//! to the first nucleotide using a single, numbered position is impossible.
//! Indeed, in a strict sense, a _range_ of numbered positions must be used to
//! encapsulate even this single nucleotide (🤯)—namely, the range `[0-1]` (note
//! that the range of interbase positions is generally considered _exclusive_,
//! but that does not apply here when the space slots and nucleotide slots are
//! split).
//!
//! #### Starting Position
//!
//! By convention within the community, interbase positions almost always start
//! at position zero (`0`) and in-base positions almost always start at position
//! one (`1`). As far as the authors can tell, this is for three main reasons
//! (please contribute to the docs if you disagree with any of these assertions
//! or know of other reasons):
//!
//! * **History.** Biological coordinate systems and databases have historically
//!   used a starting position of `1`. Thus, in-base coordinates (which, again,
//!   are generally considered to be more suitable for a broader biological
//!   audience) tend to follow these same conventions.
//! * **Intention.** Interbase coordinates, on the other hand, depart from a
//!   biologically intuitive model in favor of a more computationally intuitive
//!   model. To that end, interbase positions typically mirror programming
//!   languages in that counting starts at `0`. This suggests that, many times,
//!   interbase coordinates are a more natural fit for existing data structures
//!   and algorithms.
//! * **Convention.** Beyond the reasons above (and, further, not strictly
//!   imposed by the definitions of interbase and in-base coordinate systems),
//!   the community has evolved to use the starting position of `0` or `1` to
//!   allude to the use of interbase and in-base positions, respectively.
//!
//! #### Design Considerations
//!
//! The previously decsribed inability to represent interbase positions as a
//! single number presents a number of practical problems.
//!
//! For example, to accurately model positions as described above, a crate would
//! need to support both _numerical_ positions and _interval-based_ positions at
//! the same time. All higher-order concepts that include positions, such as
//! coordinates and intervals, would need to somehow present an ergonomic
//! interface and mental model for working with these very different models of a
//! position. Among other drawbacks, modeling things in this way would introduce
//! an incredible duplication of effort and additional opportunities for bugs to
//! be introduced.
//!
//! Beyond these practical considerations, designing a range-based, singular
//! position is not trivial. For example, any range must have a more
//! fundamental, singular type that represents the start and the end of the
//! range:
//!
//! * Should the crate introduce an even lower level concept into the crate
//!   below positions (e.g., a "number"?) that enables this design? If so, this
//!   many levels of abstraction introduce significant additional mental load
//!   for would-be users of such a crate.
//! * How would these range-based positions interact with the aforementioned
//!   upstream facilities, such as intervals? Intervals start and end with a
//!   position—isn't it much more confusing for users of the crate if an
//!   interval starts and ends with an even _lower level_ concept of a
//!   range/interval?
//!
//! In pursuit of pragmatism, this crate codifies the heuristic included in many
//! that precede it: interbase positions are, instead, represented as single
//! number that includes the nucleotide following the numbered space slot. This
//! allows for a much simpler and interoperable representation of positions
//! between coordinate systems, as the interbase position representing the first
//! nucleotide `G` is now simply `0` while the in-base position for the first
//! nucleotide is still `1`. Further, this assumption works nicely with the
//! expected behavior of intervals, which is discussed further in [the intervals
//! section of the docs](#intervals).
//!
//! #### Final Thoughts
//!
//! Though the authors feel it is more intuitive to teach the positioning
//! systems using the "interbase" and "in-base" nomenclature (and, explicitly,
//! we wish these designations were used more pervasively in the community!),
//! these terms are not frequently used in the literature today. Indeed, it is
//! much more common to hear interbase positions referred to as "0-based"
//! positions and in-base positions referred to as "1-based" positions.
//!
//! As such, the following statements are true throughout the rest of this
//! document and within the crate itself:
//!
//! * The term **0-based** is used in place of and is interchangeable with the
//!   term "interbase" with the codified assumption that the coordinate system
//!   will always start at position zero.
//! * The term **1-based** is used in place of and is interchangeable with the
//!   terms "in-base" and "base" with the codified assumption that the
//!   coordinate system will always start at position one.
//!
//! ## Strand
//!
//! DNA is a double-stranded molecule that stores genetic code within the
//! nucleus of a cell. This means that two sequences of complementary
//! nucleotides run in antiparallel. This is often referred to as being read
//! from [5' to 3'](https://en.wikipedia.org/wiki/Directionality_%28molecular_biology%29), referring
//! to connections within the underlying chemical structure. For example, below
//! is a fictional double-stranded molecule with the name `seq0`.
//!
//! ```text
//! ---------------- Read this direction --------------->
//!
//! 5'                                                 3'
//! ===================== seq0 (+) ======================
//! G   A   T   A   T   G   A   A   T   A   T   G   A   G
//! |   |   |   |   |   |   |   |   |   |   |   |   |   |
//! C   T   A   T   A   C   T   T   A   T   A   C   T   C
//! ===================== seq0 (-) ======================
//! 3'                                                 5'
//!
//! <--------------- Read this direction ----------------
//! ```
//!
//! In a real-world, biological context, both strands contain genetic
//! information that is important to the function of the cell—though both
//! strands are biologically important, _some_ system of labelling must be
//! introduced to distinguish which of the two strands a genomic coordinate is
//! located on.
//!
//! To address this, a reference genome selects one of the strands as the
//! **positive** strand (also called the "sense" strand, the "reference" strand,
//! or the `+` strand) for each contiguous molecule. This implies that the
//! opposite, complementary strand is the **negative** strand (also called the
//! "antisense" strand, the "complementary" strand, or the `-` strand). Notably,
//! reference genomes only specify the nucleotide sequence for the _positive_
//! strand, as the negative strand's nucleotide sequence may be computed as the
//! reverse complement of the positive strand.
//!
//! The concept of strandedness is useful when describing the location of
//! coordinate on a molecule with two strands. Some nucleic acid molecules, such
//! as RNA are single-stranded molecules—RNA is _derived_ from a particular
//! strand of DNA, but the RNA molecule itself is not considered to be stranded.
//!
//! Within this crate, a [`Strand`] always refers to the strand of the
//! coordinate upon a molecule (if the molecule is stranded). If the molecule
//! upon which the nucleotide(s) sit is _not_ stranded, then no strand should be
//! specified.
//!
//! This means that,
//!
//! * Coordinates that lie upon a DNA molecule must always have a strand. The
//!   [`Strand::Positive`] and [`Strand::Negative`] variants are used to
//!   distinguish which strand a coordinate sits upon relative to the strand
//!   specified in the reference genome.
//! * Coordinates that lie upon an RNA molecule have no strand. In particular,
//!   the the original strand of DNA from which a position on RNA is derived is
//!   lost during any conversion from one to the other. If it is of interest,
//!   you may keep track of this kind of thing on your own at conversion time.
//!
//! ## Intervals
//!
//! Intervals describe a range of positions upon a contiguous molecule.
//! Generally speaking, you can think of an interval as simply a start
//! coordinate and end coordinate.
//!
//! As described above, positions can be either interbase (includes the
//! nucletide following the specified numbered space slot) or in-base (includes
//! the nucleotide at the specified numbered nucleotide slot). Given these
//! characteristics, intervals that are comprised of these two different types
//! of positions generally behave differently to accentuate their strong points:
//!
//! - Interbase intervals tend to be **half-open**, meaning that all nucleotides
//!   contained between the start and end positions (but not including the last
//!   position) are included within the range.
//! - In-base intervals tend to be **fully-closed**, meaning that both the
//!   nucleotides at the start and end positions of the interval are included in
//!   the range.
//!
//! The following figure illustrates this concept using the notation described
//! in [the position section of the docs](#positions).
//!
//! ```text
//! ========================== seq0 ===========================
//! •   G   •   A   •   T   •   A   •   T   •   G   •   A   •
//! ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║   ║
//! ║   1   ║   2   ║   3   ║   4   ║   5   ║   6   ║   7   ║   In-base Positions
//! 0       1       2       3       4       5       6       7   Interbase Positions
//! ===========================================================
//! ┃   ┃                                               ┃   ░
//! ┃   ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛   ░   seq0:+:1-7 (1-based, fully-closed)
//! ┃                Both contain "GATATGA"                 ░
//! ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   ░   seq0:+:0-7 (0-based, half-open)
//! ```
//!
//! By looking at this figure, the reason for not including the end position in
//! the interbase coordinate system should be relatively intuitive: inclusion of
//! position seven (`7`) in the interbase interval would mean that the
//! nucleotide following position seven would also be included in the range.
//!
//! Notably, this means that intervals in the two systems need to be treated
//! carefully internally. For example, the length of an interval in the
//! interbase coordinate system is found with the formula `end - start`, while
//! the length of an interval in the in-base coordinate system is `end - start +
//! 1`. That being said, this crate largely handles the differences in
//! implementation for these two coordiante systems, meaning that you can use
//! either with confidence via a common interface.
//!
//! # Crate Design
//!
//! Throughout the crate, you will see references to 0-based and 1-based
//! variants of the concepts above. For example, there is a core [`Position`]
//! struct that is defined like so:
//!
//! ```ignore
//! pub struct Position<S>
//! where
//!     S: System, {
//!     // private fields
//! }
//! ```

// TODO: this is a false positive missing doc link, remove this when it gets fixed.
#![allow(rustdoc::broken_intra_doc_links)]
//! The struct takes a single, generic parameter that is a [`System`]. In this
//! design, functionality that is fundamental to both 0-based and 1-based
//! position types are implemented in the core [`Position`] struct.
//! Functionality that is different between the two coordinate systems is
//! implemented through traits (in the case of positions,
//! [the `Position` trait](crate::position::r#trait::Position<S>)) and exposed
//! through trait-constrained methods (e.g., [`Position::try_new`]).

//! Note that some concepts, such as [`Contig`] and [`Strand`] are coordinate
//! system invariant. As such, they don't take a [`System`] generic type
//! parameter.
//!
//! ## Learning More
//!
//! In the original writing of these docs, it was difficult to find a single,
//! authoritative source regarding all of the conventions and assumptions that
//! go into coordinate systems. Here are a few links that the authors consulted
//! when writing this crate.
//!
//! * [This blog post](https://genome-blog.gi.ucsc.edu/blog/2016/12/12/the-ucsc-genome-browser-coordinate-counting-systems/)
//!   from the UCSC genome browser team does a pretty good job explaining the
//!   basics of 0-based versus 1-based coordinate systems and why they are used
//!   in different contexts.
//!     * Note that this crate does not follow the conventions UCSC uses for
//!       formatting the two coordinate systems differently (e.g. `seq0 0 1` for
//!       0-based coordinates and `seq1:1-1`). Instead, the two coordinate
//!       systems are distinguished by the Rust type system and are serialized
//!       similarly (e.g., `seq0:+:0-1` for 0-based coordinates and `seq0:+:1-1`
//!       for 1-based coordinates).
//! * [This blog post](https://tidyomics.com/blog/2018/12/09/2018-12-09-the-devil-0-and-1-coordinate-system-in-genomics/)
//!   also presents the two coordinate systems and gives some details about
//!   concrete file formats where each are used.
//! * [This cheat sheet](https://www.biostars.org/p/84686/) is a popular
//!   community resource (though, you should be sure to read the comments!).
//!
//! [chrEBV]: https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus
//! [grch37-genome]: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
//! [grch38-genome]: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
//! [chrMT]: https://en.wikipedia.org/wiki/Mitochondrial_DNA
//! [t2t-genome]: https://www.ncbi.nlm.nih.gov/assembly/GCF_009914755.1/
//! [t2t-publication]: https://www.science.org/doi/10.1126/science.abj6987

use omics_core::VARIANT_SEPARATOR;

pub mod contig;
pub mod interval;
pub mod one;
pub mod position;
pub mod strand;
pub mod system;
pub mod zero;

pub use contig::Contig;
pub use interval::Interval;
pub use position::Position;
pub use strand::Strand;

use crate::position::Value;
use crate::system::System;

/// Safe addition.
pub trait CheckedAdd<T>: Sized {
    /// The output type.
    type Output;

    /// Adds two items.
    ///
    /// - If the addition occurs succesfully, then [`Some<Self>`] is returned.
    /// - If the addition would overflow, [`None`] is returned.
    fn checked_add(&self, rhs: T) -> Option<Self::Output>;
}

/// Safe subtraction.
pub trait CheckedSub<T>: Sized {
    /// The output type.
    type Output;

    /// Subtracts two items.
    ///
    /// - If the subtraction occurs successfully, then [`Some<Self>`] is
    ///   returned.
    /// - If the subtraction would overflow, [`None`] is returned.
    fn checked_sub(&self, rhs: T) -> Option<Self::Output>;
}

/// An error related to the parsing of a [`Coordinate`].
#[derive(Debug, Eq, PartialEq)]
pub enum ParseError {
    /// Attempted to parse a [`Coordinate`] from an invalid coordinate format.
    InvalidFormat(String),

    /// An invalid contig was attempted to be parsed.
    ///
    /// The value is the [`Contig`]'s [`Error`](crate::contig::Error) written to
    /// a [`String`].
    InvalidContig(String),

    /// An invalid strand was attempted to be parsed.
    ///
    /// The value is the [`Strand`]'s [`Error`](crate::strand::Error) written to
    /// a [`String`].
    InvalidStrand(String),

    /// An invalid position was attempted to be parsed.
    ///
    /// The value is the [`Position`]'s [`Error`](crate::position::Error)
    /// written to a [`String`].
    InvalidPosition(String),
}

impl std::fmt::Display for ParseError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            ParseError::InvalidFormat(value) => write!(f, "invalid format: {value}"),
            ParseError::InvalidContig(err) => write!(f, "invalid contig: {err}"),
            ParseError::InvalidStrand(err) => write!(f, "invalid strand: {err}"),
            ParseError::InvalidPosition(err) => write!(f, "invalid position: {err}"),
        }
    }
}

impl std::error::Error for ParseError {}

/// An artimetic error related to [`Coordinate`]s.
#[derive(Debug, Eq, PartialEq)]
pub enum ArithmeticError {
    /// Could not perform arithmetic for coordinates on different contigs.
    MismatchedContigs(Contig, Contig),

    /// Could not perform arithmetic for coordinates on different strands.
    MismatchedStrands(Strand, Strand),
}

impl std::fmt::Display for ArithmeticError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            ArithmeticError::MismatchedContigs(a, b) => {
                write!(f, "mismatched contigs: {a}, {b}")
            }
            ArithmeticError::MismatchedStrands(a, b) => {
                write!(f, "mismatched strands: {a}, {b}")
            }
        }
    }
}

impl std::error::Error for ArithmeticError {}

/// An error related to a [`Coordinate`].
#[derive(Debug)]
pub enum Error {
    /// An arithmetic error.
    ArithmeticError(ArithmeticError),

    /// Attempted to create a lower bound coordinate that was not on the
    /// negative strand.
    LowerBoundOnNonNegativeStrand,

    /// A parse error.
    ParseError(ParseError),

    /// A position error.
    Position(position::Error),
}

impl std::fmt::Display for Error {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Error::ArithmeticError(err) => write!(f, "arithmetic error: {err}"),
            Error::LowerBoundOnNonNegativeStrand => write!(
                f,
                "attempted to place lower bound position on non-negative strand for coordinate"
            ),
            Error::ParseError(err) => write!(f, "parse error: {err}"),
            Error::Position(err) => write!(f, "position error: {err}"),
        }
    }
}

impl std::error::Error for Error {}

/// A [`Result`](std::result::Result) with an [`Error`].
pub type Result<T> = std::result::Result<T, Error>;

/// A coordinate within a genome consisting of a contig, a strand, and a
/// position.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Coordinate<S: System> {
    /// The coordinate system.
    system: S,

    /// The contig.
    contig: Contig,

    /// The strand.
    strand: Strand,

    /// The position.
    position: Position<S>,
}

impl<S: System> std::fmt::Display for Coordinate<S> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if !f.alternate() {
            write!(f, "{}:{}:{}", self.contig, self.strand, self.position)
        } else {
            write!(
                f,
                "{}:{}:{} ({:#})",
                self.contig, self.strand, self.position, self.system
            )
        }
    }
}

impl<S: System> Coordinate<S> {
    /// Attempts to create a new [`Coordinate`].
    ///
    /// Note that a lower bound position can only sit on the
    /// [`Strand::Negative`], so trying to create a [`Coordinate`] with a lower
    /// bound position on any non-negative strand will result in an
    /// [`Error::LowerBoundOnNonNegativeStrand`].
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = Coordinate::<Zero>::try_new("seq0", "+", 1)?;
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn try_new<C: TryInto<Contig>, Q: TryInto<Strand>, P: TryInto<Position<S>>>(
        contig: C,
        strand: Q,
        position: P,
    ) -> Result<Self>
    where
        <C as TryInto<Contig>>::Error: std::error::Error,
        <Q as TryInto<Strand>>::Error: std::error::Error,
        <P as TryInto<Position<S>>>::Error: std::error::Error,
    {
        let contig = contig
            .try_into()
            .map_err(|err| Error::ParseError(ParseError::InvalidContig(err.to_string())))?;
        let strand = strand
            .try_into()
            .map_err(|err| Error::ParseError(ParseError::InvalidStrand(err.to_string())))?;
        let position = position
            .try_into()
            .map_err(|err| Error::ParseError(ParseError::InvalidPosition(err.to_string())))?;

        if position.inner() == &Value::LowerBound && strand != Strand::Negative {
            return Err(Error::LowerBoundOnNonNegativeStrand);
        }

        Ok(Self {
            system: S::default(),
            contig,
            strand,
            position,
        })
    }

    /// Gets the [`Contig`] for this [`Coordinate`] by reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.contig().inner(), "seq0");
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn contig(&self) -> &Contig {
        &self.contig
    }

    /// Consumes `self` and returns the inner [`Contig`] from this
    /// [`Coordinate`].
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.into_contig().inner(), "seq0");
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn into_contig(self) -> Contig {
        self.contig
    }

    /// Gets the [`Strand`] for this [`Coordinate`] by reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.strand(), &Strand::Positive);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn strand(&self) -> &Strand {
        &self.strand
    }

    /// Consumes `self` and returns the inner [`Strand`] from this
    /// [`Coordinate`].
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.into_strand(), Strand::Positive);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn into_strand(self) -> Strand {
        self.strand
    }

    /// Gets the [`Position`] for this [`Coordinate`] by reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Position;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.position(), &"1".parse::<Position<Zero>>()?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn position(&self) -> &Position<S> {
        &self.position
    }

    /// Consumes `self` and returns the inner [`Position`] from this
    /// [`Coordinate`].
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::position::Value;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    ///
    /// let (contig, strand, position) = coordinate.into_parts();
    /// assert_eq!(contig.inner(), "seq0");
    /// assert_eq!(strand, Strand::Positive);
    /// assert_eq!(position.inner(), &Value::Usize(1));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn into_position(self) -> Position<S> {
        self.position
    }

    /// Consumes `self` to return the parts that comprise this [`Coordinate`].
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::position::Value;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
    /// assert_eq!(coordinate.into_position().inner(), &Value::Usize(1));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn into_parts(self) -> (Contig, Strand, Position<S>) {
        (self.contig, self.strand, self.position)
    }

    /// Consumes the [`Coordinate`] to attempt to move the coordinate forward by
    /// a specified magnitude.
    ///
    /// A checked add (for positive strand) or subtract (for negative strand) is
    /// performed to ensure we don't overflow.
    ///
    /// Note that, though the position is checked for usize overflow, we don't
    /// do any bounds checking to make sure that the coordinates fall within any
    /// given interval.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:0".parse::<Coordinate<Zero>>()?;
    /// let result = coordinate.move_forward(10)?.unwrap();
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn move_forward(self, magnitude: usize) -> Result<Option<Coordinate<S>>>
    where
        Position<S>: position::r#trait::Position<S>,
    {
        // If the magnitude is zero, the result is just the identity of the
        // current [`Coordinate`].
        if magnitude == 0 {
            return Ok(Some(self));
        }

        let position = match self.strand {
            Strand::Positive => self.position.checked_add(magnitude),
            Strand::Negative => self.position.checked_sub(magnitude),
        };

        let result = position
            .map(|position| Self::try_new(self.contig().clone(), self.strand().clone(), position))
            .transpose();

        match result {
            // This should never be possible, as (a) you are only adding on the
            // forward strand and (b) you cannot add anything to a [`Position`]
            // to give you a value of [`Value::LowerBound`].
            Err(Error::LowerBoundOnNonNegativeStrand) => unreachable!(),
            result => result,
        }
    }

    /// Consumes the [`Coordinate`] to attempt to move the coordinate backward
    /// by a specified magnitude.
    ///
    /// A checked sub (for positive strand) or add (for negative strand) is
    /// performed to ensure we don't overflow.
    ///
    /// Note that, though the position is checked for usize overflow, we don't
    /// do any bounds checking to make sure that the coordinates fall within any
    /// given interval.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::system::Zero;
    ///
    /// let coordinate = "seq0:+:0".parse::<Coordinate<Zero>>()?;
    /// let result = coordinate.move_forward(10)?.unwrap();
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn move_backward(self, magnitude: usize) -> Result<Option<Coordinate<S>>>
    where
        Position<S>: position::r#trait::Position<S>,
    {
        // If the magnitude is zero, the result is just the identity of the
        // current [`Coordinate`].
        if magnitude == 0 {
            return Ok(Some(self));
        }

        let position = match self.strand {
            Strand::Positive => self.position.checked_sub(magnitude),
            Strand::Negative => self.position.checked_add(magnitude),
        };

        let result = position
            .map(|position| Self::try_new(self.contig().clone(), self.strand().clone(), position))
            .transpose();

        match result {
            // If we would have tried to create a lower bound on the positive
            // strand, we can just treat this as if the move was out of bounds.
            // Generally, the user does not want an error in this case.
            Err(Error::LowerBoundOnNonNegativeStrand) => Ok(None),
            result => result,
        }
    }

    /// Consumes `self` to attempt to move the [`Coordinate`] forward by the
    /// specified magnitude while also performing a bounds check within the
    /// provided interval.
    ///
    /// The following steps are performed:
    ///
    /// * First, the coordinate is moved forward by the specified magnitude.
    ///   During this move, the position is checked for overflows.
    /// * Next, the calculated result is checked to ensure it falls within the
    ///   specified interval. This is to ensure that, although the `usize`
    ///   limits may not broken, the interval continues to contain the moved
    ///   coordinate.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::system::Zero;
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Interval;
    /// use omics_coordinate::position::Value;
    /// use omics_coordinate::Strand;
    ///
    /// // Positive-stranded coordinate that falls within the provided interval.
    ///
    /// let mut coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
    /// let interval = "seq0:+:0-1000".parse::<Interval<Zero>>()?;
    ///
    /// let result = coordinate
    ///     .move_forward_checked_bounds(10, &interval)
    ///     .unwrap()
    ///     .unwrap();
    ///
    /// assert_eq!(result.contig().inner(), "seq0");
    /// assert_eq!(result.position().inner(), &Value::Usize(10));
    /// assert_eq!(result.strand(), &Strand::Positive);
    ///
    /// // Negative-stranded position that falls within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Negative, 1000)?;
    /// let interval = "seq0:-:1000-0".parse::<Interval<Zero>>()?;
    /// let result = coordinate
    ///     .move_forward_checked_bounds(10, &interval)
    ///     .unwrap()
    ///     .unwrap();
    ///
    /// assert_eq!(result.contig().inner(), "seq0");
    /// assert_eq!(result.position().inner(), &Value::Usize(990));
    /// assert_eq!(result.strand(), &Strand::Negative);
    ///
    /// // Positive-stranded position that _does not_ fall within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Positive, 0)?;
    /// let interval = "seq0:+:0-10".parse::<Interval<Zero>>()?;
    /// let result = coordinate.move_forward_checked_bounds(10, &interval).unwrap();
    ///
    /// assert_eq!(result, None);
    ///
    /// // Negative-stranded position that _does not_ fall within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Negative, 10)?;
    /// let interval = "seq0:-:10-0".parse::<Interval<Zero>>()?;
    /// let result = coordinate.move_forward_checked_bounds(10, &interval).unwrap();
    ///
    /// assert_eq!(result, None);
    ///
    /// // Lower-bound position that _does not_ fall within interval
    /// // (and also would not move forward due to underflow).
    ///
    /// let coordinate = Coordinate::<Zero>::lower_bound("seq0");
    /// let interval = "seq0:-:10-[".parse::<Interval<Zero>>()?;
    /// let result = coordinate.move_forward_checked_bounds(1, &interval).unwrap();
    ///
    /// assert_eq!(result, None);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    pub fn move_forward_checked_bounds(
        self,
        magnitude: usize,
        interval: &Interval<S>,
    ) -> Result<Option<Coordinate<S>>>
    where
        Position<S>: position::r#trait::Position<S>,
        Interval<S>: interval::r#trait::Interval<S>,
    {
        Ok(self.move_forward(magnitude)?.and_then(|value| {
            if interval.contains(&value) {
                Some(value)
            } else {
                None
            }
        }))
    }

    /// Consumes `self` to attempt to move the [`Coordinate`] backward by the
    /// specified magnitude while also performing a bounds check within the
    /// provided interval.
    ///
    /// The following steps are performed:
    ///
    /// * First, the coordinate is moved backward by the specified magnitude.
    ///   During this move, the position is checked for overflows.
    /// * Next, the calculated result is checked to ensure it falls within the
    ///   specified interval. This is to ensure that, although the `usize`
    ///   limits may not broken, the interval continues to contain the moved
    ///   coordinate.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::system::Zero;
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Interval;
    /// use omics_coordinate::position::Value;
    /// use omics_coordinate::Strand;
    ///
    /// // Positive-stranded coordinate that falls within the provided interval.
    ///
    /// let mut coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 10)?;
    /// let interval = "seq0:+:0-1000".parse::<Interval<Zero>>()?;
    ///
    /// let result = coordinate
    ///     .move_backward_checked_bounds(10, &interval)
    ///     .unwrap()
    ///     .unwrap();
    ///
    /// assert_eq!(result.contig().inner(), "seq0");
    /// assert_eq!(result.position().inner(), &Value::Usize(0));
    /// assert_eq!(result.strand(), &Strand::Positive);
    ///
    /// // Negative-stranded position that falls within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Negative, 990)?;
    /// let interval = "seq0:-:1000-0".parse::<Interval<Zero>>()?;
    /// let result = coordinate
    ///     .move_backward_checked_bounds(10, &interval)
    ///     .unwrap()
    ///     .unwrap();
    ///
    /// assert_eq!(result.contig().inner(), "seq0");
    /// assert_eq!(result.position().inner(), &Value::Usize(1000));
    /// assert_eq!(result.strand(), &Strand::Negative);
    ///
    /// // Positive-stranded position that _does not_ fall within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Positive, 0)?;
    /// let interval = "seq0:+:0-10".parse::<Interval<Zero>>()?;
    /// let result = coordinate.move_backward_checked_bounds(1, &interval).unwrap();
    ///
    /// assert_eq!(result, None);
    ///
    /// // Negative-stranded position that _does not_ fall within the provided interval.
    ///
    /// let coordinate = Coordinate::try_new("seq0", Strand::Negative, 10)?;
    /// let interval = "seq0:-:10-0".parse::<Interval<Zero>>()?;
    /// let result = coordinate.move_backward_checked_bounds(1, &interval).unwrap();
    ///
    /// assert_eq!(result, None);
    ///
    /// // Lower-bound position that _does not_ fall within interval
    /// // (and also would not move forward due to underflow).
    ///
    /// let coordinate = Coordinate::<Zero>::lower_bound("seq0");
    /// let interval = "seq0:-:10-[".parse::<Interval<Zero>>()?;
    /// let result = coordinate
    ///     .move_backward_checked_bounds(1, &interval)
    ///     .unwrap()
    ///     .unwrap();
    ///
    /// assert_eq!(result.contig().inner(), "seq0");
    /// assert_eq!(result.position().inner(), &Value::Usize(0));
    /// assert_eq!(result.strand(), &Strand::Negative);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    pub fn move_backward_checked_bounds(
        self,
        magnitude: usize,
        interval: &Interval<S>,
    ) -> Result<Option<Coordinate<S>>>
    where
        Position<S>: position::r#trait::Position<S>,
        Interval<S>: interval::r#trait::Interval<S>,
    {
        Ok(self.move_backward(magnitude)?.and_then(|value| {
            if interval.contains(&value) {
                Some(value)
            } else {
                None
            }
        }))
    }

    /// Consumes `self` to swap the [`Strand`] of the [`Coordinate`] without
    /// modifying the contig or the position.
    ///
    /// # Examples
    ///
    /// ```
    /// use omics_coordinate::Coordinate;
    /// use omics_coordinate::Strand;
    /// use omics_coordinate::position::Value;
    /// use omics_coordinate::system::Zero;
    ///
    /// // Swapping a positive-stranded position to a negative-stranded position.
    ///
    /// let coordinate = "seq0:+:1000".parse::<Coordinate<Zero>>()?;
    /// let swapped = coordinate.swap_strand()?;
    ///
    /// assert_eq!(swapped.contig().inner(), "seq0");
    /// assert_eq!(swapped.strand(), &Strand::Negative);
    /// assert_eq!(swapped.position().inner(), &Value::Usize(1000));
    ///
    /// // Swapping a negative-stranded position to a positive-stranded position.
    ///
    /// let coordinate = "seq0:-:1000".parse::<Coordinate<Zero>>()?;
    /// let swapped = coordinate.swap_strand()?;
    ///
    /// assert_eq!(swapped.contig().inner(), "seq0");
    /// assert_eq!(swapped.strand(), &Strand::Positive);
    /// assert_eq!(swapped.position().inner(), &Value::Usize(1000));
    ///
    /// // Failing to swap the lower bound.
    ///
    /// let coordinate = "seq0:-:[".parse::<Coordinate<Zero>>()?;
    /// let err = coordinate.swap_strand().unwrap_err();
    ///
    /// assert_eq!(
    ///     err.to_string(),
    ///     String::from(
    ///         "attempted to place lower bound position on non-negative strand for coordinate"
    ///     )
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn swap_strand(self) -> Result<Coordinate<S>> {
        let (contig, strand, position) = self.into_parts();
        Coordinate::try_new(contig, strand.complement(), position)
    }
}

impl<S: System> std::str::FromStr for Coordinate<S>
where
    Position<S>: position::r#trait::Position<S>,
{
    type Err = Error;

    fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
        let parts = s.split(VARIANT_SEPARATOR).collect::<Vec<_>>();

        if parts.len() != 3 {
            return Err(Error::ParseError(ParseError::InvalidFormat(s.to_owned())));
        }

        let mut parts = parts.iter();

        // SAFETY: we checked that there are three parts above. Given that we
        // haven't pulled anything from the iterator, we can always safely
        // unwrap this.
        let contig = parts
            .next()
            .unwrap()
            .parse::<Contig>()
            .map_err(|err| Error::ParseError(ParseError::InvalidContig(err.to_string())))?;

        // SAFETY: we checked that there are three parts above. Given that we
        // have only pulled one item from the iterator, we can always safely
        // unwrap this.
        let strand = parts
            .next()
            .unwrap()
            .parse::<Strand>()
            .map_err(|err| Error::ParseError(ParseError::InvalidStrand(err.to_string())))?;

        // SAFETY: we checked that there are three parts above. Given that we
        // have only pulled two items from the iterator, we can always safely
        // unwrap this.
        let position = parts
            .next()
            .unwrap()
            .parse::<Position<S>>()
            .map_err(|err| Error::ParseError(ParseError::InvalidPosition(err.to_string())))?;

        Self::try_new(contig, strand, position)
    }
}

/// Traits related to coordinates.
pub mod r#trait {
    use super::*;

    /// Requirements to be a coordinate.
    pub trait Coordinate<S: System>: Sized {}
}

#[cfg(test)]
mod tests {
    use std::result::Result;

    use crate::Coordinate;
    use crate::Error;
    use crate::Position;
    use crate::Strand;
    use crate::position::Value;
    use crate::system::One;
    use crate::system::Zero;

    #[test]
    fn it_correctly_deserializes_valid_coordinates() -> Result<(), Box<dyn std::error::Error>> {
        let coordinate = "seq0:+:1".parse::<Coordinate<Zero>>()?;
        assert_eq!(coordinate.contig().inner(), "seq0");
        assert_eq!(coordinate.strand(), &Strand::Positive);
        assert_eq!(coordinate.position().inner(), &Value::Usize(1));
        assert_eq!(coordinate.position().inner().get(), Some(1));

        let coordinate = "Y:-:[".parse::<Coordinate<Zero>>()?;
        assert_eq!(coordinate.contig().inner(), "Y");
        assert_eq!(coordinate.strand(), &Strand::Negative);
        assert_eq!(coordinate.position().inner(), &Value::LowerBound);
        assert_eq!(coordinate.position().inner().get(), None);

        let coordinate = "seq0:+:1".parse::<Coordinate<One>>()?;
        assert_eq!(coordinate.contig().inner(), "seq0");
        assert_eq!(coordinate.strand(), &Strand::Positive);
        assert_eq!(coordinate.position().inner(), &Value::Usize(1));
        assert_eq!(coordinate.position().get(), Some(1));

        let coordinate = "Y:-:1000".parse::<Coordinate<One>>()?;
        assert_eq!(coordinate.contig().inner(), "Y");
        assert_eq!(coordinate.strand(), &Strand::Negative);
        assert_eq!(coordinate.position().inner(), &Value::Usize(1000));
        assert_eq!(coordinate.position().get(), Some(1000));

        Ok(())
    }

    #[test]
    fn it_correctly_fails_when_deserializing_invalid_coordinates()
    -> Result<(), Box<dyn std::error::Error>> {
        let err = "seq0".parse::<Coordinate<One>>().unwrap_err();
        assert_eq!(err.to_string(), "parse error: invalid format: seq0");

        let err = "seq0:0".parse::<Coordinate<One>>().unwrap_err();
        assert_eq!(err.to_string(), "parse error: invalid format: seq0:0");

        let err = ":1".parse::<Coordinate<One>>().unwrap_err();
        assert_eq!(err.to_string(), "parse error: invalid format: :1");

        Ok(())
    }

    #[test]
    fn it_creates_valid_coordinates() -> Result<(), Box<dyn std::error::Error>> {
        // Positive-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        assert_eq!(coordinate.contig().inner(), "seq0");
        assert_eq!(coordinate.strand(), &Strand::Positive);
        assert_eq!(coordinate.position().inner(), &Value::Usize(0));

        // Negative-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 0)?;
        assert_eq!(coordinate.contig().inner(), "seq0");
        assert_eq!(coordinate.strand(), &Strand::Negative);
        assert_eq!(coordinate.position().inner(), &Value::Usize(0));

        // Lower bound
        let coordinate =
            Coordinate::<Zero>::try_new("seq0", Strand::Negative, Position::<Zero>::lower_bound())?;
        assert_eq!(coordinate.contig().inner(), "seq0");
        assert_eq!(coordinate.strand(), &Strand::Negative);
        assert_eq!(coordinate.position().inner(), &Value::LowerBound);

        // Attempting to create lower bound on positive strand
        let err =
            Coordinate::<Zero>::try_new("seq0", Strand::Positive, Position::<Zero>::lower_bound())
                .unwrap_err();
        assert!(matches!(err, Error::LowerBoundOnNonNegativeStrand));

        Ok(())
    }

    #[test]
    fn it_correctly_moves_forward_zero_based_positions() -> Result<(), Box<dyn std::error::Error>> {
        // Positive-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        let result = coordinate.move_forward(10)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(10));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 1000)?;
        let result = coordinate.move_forward(10)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(990));
        assert_eq!(result.strand(), &Strand::Negative);

        // Positive-stranded, but with magnitude zero
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        let result = coordinate.move_forward(0)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(0));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded, but with magnitude zero
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 0)?;
        let result = coordinate.move_forward(0)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(0));
        assert_eq!(result.strand(), &Strand::Negative);

        // Negative-stranded to lower bound
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 0)?;
        let result = coordinate.move_forward(1)?.unwrap();

        assert_eq!(result, Coordinate::<Zero>::lower_bound("seq0"));

        // Negative-stranded overflow (in the negative direction)
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 0)?;
        let result = coordinate.move_forward(2)?;

        assert_eq!(result, None);

        // Negative-bound overflow (in the negative direction)
        let coordinate = Coordinate::<Zero>::lower_bound("seq0");
        let result = coordinate.move_forward(1)?;

        assert_eq!(result, None);

        Ok(())
    }

    #[test]
    fn it_correctly_moves_forward_one_based_positions() -> Result<(), Box<dyn std::error::Error>> {
        // Positive-stranded
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 1)?;
        let result = coordinate.move_forward(10)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(11));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 11)?;
        let result = coordinate.move_forward(10)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(1));
        assert_eq!(result.strand(), &Strand::Negative);

        // Positive-stranded, but with magnitude zero
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 1)?;
        let result = coordinate.move_forward(0)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(1));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded, but with magnitude zero
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 1)?;
        let result = coordinate.move_forward(0)?.unwrap();

        assert_eq!(result.contig().inner(), "seq0");
        assert_eq!(result.position().inner(), &Value::Usize(1));
        assert_eq!(result.strand(), &Strand::Negative);

        // Negative-stranded overflow (to where the lower bound would be).
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 1)?;
        let result = coordinate.move_forward(1)?;

        assert_eq!(result, None);

        // Negative-stranded overflow (in the negative direction)
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 1)?;
        let result = coordinate.move_forward(1)?;

        assert_eq!(result, None);

        Ok(())
    }

    #[test]
    fn it_correctly_moves_backward_zero_based_positions() -> Result<(), Box<dyn std::error::Error>>
    {
        // Positive-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 500)?;
        let result = coordinate.move_backward(10)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(490));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 500)?;
        let result = coordinate.move_backward(10)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(510));
        assert_eq!(result.strand(), &Strand::Negative);

        // Positive-stranded, but with magnitude zero
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        let result = coordinate.move_backward(0)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(0));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded, but with magnitude zero
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Negative, 0)?;
        let result = coordinate.move_backward(0)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(0));
        assert_eq!(result.strand(), &Strand::Negative);

        // Would try to create a lower bound on the positive strand.
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        let result = coordinate.move_backward(1)?;

        assert_eq!(result, None);

        // Positive-stranded overflow (in the negative direction)
        let coordinate = Coordinate::<Zero>::try_new("seq0", Strand::Positive, 0)?;
        let result = coordinate.move_backward(2)?;

        assert_eq!(result, None);

        // Negative-bound
        let coordinate = Coordinate::<Zero>::lower_bound("seq0");
        let result = coordinate.move_backward(10)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(9));
        assert_eq!(result.strand(), &Strand::Negative);

        Ok(())
    }

    #[test]
    fn it_correctly_moves_backward_one_based_positions() -> Result<(), Box<dyn std::error::Error>> {
        // Positive-stranded
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 500)?;
        let result = coordinate.move_backward(10)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(490));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 500)?;
        let result = coordinate.move_backward(10)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(510));
        assert_eq!(result.strand(), &Strand::Negative);

        // Positive-stranded, but with magnitude zero
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 1)?;
        let result = coordinate.move_backward(0)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(1));
        assert_eq!(result.strand(), &Strand::Positive);

        // Negative-stranded, but with magnitude zero
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Negative, 1)?;
        let result = coordinate.move_backward(0)?.unwrap();

        assert_eq!(result.contig().inner(), &String::from("seq0"));
        assert_eq!(result.position().inner(), &Value::Usize(1));
        assert_eq!(result.strand(), &Strand::Negative);

        // Would try to create a lower bound on the positive strand.
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 1)?;
        let result = coordinate.move_backward(1)?;

        assert_eq!(result, None);

        // Positive-stranded overflow (in the negative direction)
        let coordinate = Coordinate::<One>::try_new("seq0", Strand::Positive, 1)?;
        let result = coordinate.move_backward(2)?;

        assert_eq!(result, None);

        Ok(())
    }
}