Expand description
§Omega Meta-SONA
Self-Organizing Neural Architecture (META-SONA) - The intelligence design engine for ExoGenesis Omega.
§Overview
META-SONA is the component that enables ExoGenesis Omega to design new cognitive architectures. While SONA optimizes weights within a fixed architecture, META-SONA optimizes the architecture itself.
§Features
- Architecture Search: Monte Carlo Tree Search (MCTS) for exploring architecture space
- Hyperparameter Optimization: Proximal Policy Optimization (PPO) for tuning
- Multi-Objective Fitness: Evaluation across capability, efficiency, alignment, and novelty
- Intelligence Factory: Create and evolve intelligences from specifications
§Architecture
┌─────────────────────┐
│ META-SONA │
└──────────┬──────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Architecture │ │ Intelligence │ │ Fitness │
│ Search (MCTS) │ │ Factory │ │ Evaluation │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ PPO │ │ Architecture │ │ Benchmarks │
│ Optimization │ │ Space │ │ & Metrics │
└─────────────────┘ └─────────────────┘ └─────────────────┘§Usage
use omega_meta_sona::{IntelligenceFactory, IntelligenceSpec};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create factory
let mut factory = IntelligenceFactory::new();
// Define specification
let spec = IntelligenceSpec {
name: "My AI".to_string(),
min_capability: 0.8,
..Default::default()
};
// Create intelligence
let intelligence = factory.create_intelligence(spec).await?;
println!("Created: {} with fitness {:.2}",
intelligence.name,
intelligence.architecture.fitness.unwrap().overall
);
Ok(())
}§Components
§Architecture Module
Defines how architectures are represented and encoded:
ArchitectureSpace: The space of all possible architecturesArchitectureEncoding: Vector representations for optimizationComputationalGraph: Graph structure of neural architectures
§Search Module
Algorithms for discovering architectures:
MCTS: Monte Carlo Tree Search with UCB1 selection- Parallel simulations and rollouts
- Architecture-specific exploration bonuses
§Optimization Module
Refinement of discovered architectures:
PPOOptimizer: Proximal Policy Optimization- Generalized Advantage Estimation (GAE)
- Clipped surrogate objectives
§Fitness Module
Multi-objective evaluation:
- Capability evaluation (benchmarks)
- Efficiency evaluation (resource usage)
- Alignment evaluation (safety tests)
- Novelty evaluation (innovation metrics)
§Factory Module
Intelligence creation and evolution:
IntelligenceFactory: Main API for creating intelligences- Specification-based creation
- Multi-generation evolution
Re-exports§
pub use architecture::ArchitectureSpace;pub use architecture::ArchitectureEncoding;pub use architecture::ArchitectureNode;pub use architecture::NodeType;pub use architecture::Parameters;pub use architecture::Connection;pub use architecture::ComputationalGraph;pub use search::MCTS;pub use search::MCTSConfig;pub use search::MCTSError;pub use optimization::PPOOptimizer;pub use optimization::PPOConfig;pub use optimization::Trajectory;pub use optimization::OptimizationResult;pub use fitness::FitnessEvaluator;pub use fitness::MetricWeight;pub use fitness::EvaluationError;pub use factory::IntelligenceFactory;pub use factory::IntelligenceSpec;pub use factory::FactoryError;
Modules§
- architecture
- Architecture space representation for META-SONA
- factory
- Intelligence factory for creating and evolving intelligences
- fitness
- Fitness evaluation for architectures
- optimization
- Architecture optimization algorithms
- search
- Architecture search algorithms
Structs§
- MetaSONA
- Meta-SONA orchestrator - main entry point
Constants§
- VERSION
- Version information
Type Aliases§
- Result
- Result type for META-SONA operations