1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
use odbc_sys::HStmt;

use crate::{
    buffers::Indicator,
    error::ExtendResult,
    handles::{AsStatementRef, CDataMut, SqlResult, State, Statement, StatementRef},
    parameter::{Binary, CElement, Text, VarCell, VarKind, WideText},
    sleep::{wait_for, Sleep},
    Error, ResultSetMetadata,
};

use std::{
    mem::{size_of, MaybeUninit},
    ptr,
    thread::panicking,
};

/// Cursors are used to process and iterate the result sets returned by executing queries.
///
/// # Example: Fetching result in batches
///
/// ```rust
/// use odbc_api::{Cursor, buffers::{BufferDesc, ColumnarAnyBuffer}, Error};
///
/// /// Fetches all values from the first column of the cursor as i32 in batches of 100 and stores
/// /// them in a vector.
/// fn fetch_all_ints(cursor: impl Cursor) -> Result<Vec<i32>, Error> {
///     let mut all_ints = Vec::new();
///     // Batch size determines how many values we fetch at once.
///     let batch_size = 100;
///     // We expect the first column to hold INTEGERs (or a type convertible to INTEGER). Use
///     // the metadata on the result set, if you want to investige the types of the columns at
///     // runtime.
///     let description = BufferDesc::I32 { nullable: false };
///     // This is the buffer we bind to the driver, and repeatedly use to fetch each batch
///     let buffer = ColumnarAnyBuffer::from_descs(batch_size, [description]);
///     // Bind buffer to cursor
///     let mut row_set_buffer = cursor.bind_buffer(buffer)?;
///     // Fetch data batch by batch
///     while let Some(batch) = row_set_buffer.fetch()? {
///         all_ints.extend_from_slice(batch.column(0).as_slice().unwrap())
///     }
///     Ok(all_ints)
/// }
/// ```
pub trait Cursor: ResultSetMetadata {
    /// Advances the cursor to the next row in the result set. This is **Slow**. Bind
    /// [`crate::buffers`] instead, for good performance.
    ///
    /// ⚠ While this method is very convenient due to the fact that the application does not have
    /// to declare and bind specific buffers, it is also in many situations extremely slow. Concrete
    /// performance depends on the ODBC driver in question, but it is likely it performs a roundtrip
    /// to the datasource for each individual row. It is also likely an extra conversion is
    /// performed then requesting individual fields, since the C buffer type is not known to the
    /// driver in advance. Consider binding a buffer to the cursor first using
    /// [`Self::bind_buffer`].
    ///
    /// That being said, it is a convenient programming model, as the developer does not need to
    /// prepare and allocate the buffers beforehand. It is also a good way to retrieve really large
    /// single values out of a data source (like one large text file). See [`CursorRow::get_text`].
    fn next_row(&mut self) -> Result<Option<CursorRow<'_>>, Error> {
        let row_available = unsafe {
            self.as_stmt_ref()
                .fetch()
                .into_result_bool(&self.as_stmt_ref())?
        };
        let ret = if row_available {
            Some(unsafe { CursorRow::new(self.as_stmt_ref()) })
        } else {
            None
        };
        Ok(ret)
    }

    /// Binds this cursor to a buffer holding a row set.
    fn bind_buffer<B>(self, row_set_buffer: B) -> Result<BlockCursor<Self, B>, Error>
    where
        Self: Sized,
        B: RowSetBuffer;

    /// For some datasources it is possible to create more than one result set at once via a call to
    /// execute. E.g. by calling a stored procedure or executing multiple SQL statements at once.
    /// This method consumes the current cursor and creates a new one representing the next result
    /// set should it exist.
    fn more_results(self) -> Result<Option<Self>, Error>
    where
        Self: Sized;
}

/// An individual row of an result set. See [`crate::Cursor::next_row`].
pub struct CursorRow<'s> {
    statement: StatementRef<'s>,
}

impl<'s> CursorRow<'s> {
    /// # Safety
    ///
    /// `statement` must be in a cursor state.
    unsafe fn new(statement: StatementRef<'s>) -> Self {
        CursorRow { statement }
    }
}

impl<'s> CursorRow<'s> {
    /// Fills a suitable target buffer with a field from the current row of the result set. This
    /// method drains the data from the field. It can be called repeatedly to if not all the data
    /// fit in the output buffer at once. It should not called repeatedly to fetch the same value
    /// twice. Column index starts at `1`.
    pub fn get_data(
        &mut self,
        col_or_param_num: u16,
        target: &mut (impl CElement + CDataMut),
    ) -> Result<(), Error> {
        self.statement
            .get_data(col_or_param_num, target)
            .into_result(&self.statement)
            .provide_context_for_diagnostic(|record, function| {
                if record.state == State::INDICATOR_VARIABLE_REQUIRED_BUT_NOT_SUPPLIED {
                    Error::UnableToRepresentNull(record)
                } else {
                    Error::Diagnostics { record, function }
                }
            })
    }

    /// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
    /// index starts at `1`. The used encoding is accordig to the ODBC standard determined by your
    /// system local. Ultimatly the choice is up to the implementation of your ODBC driver, which
    /// often defaults to always UTF-8.
    ///
    /// # Example
    ///
    /// Retrieve an arbitrary large text file from a database field.
    ///
    /// ```
    /// use odbc_api::{Connection, Error, IntoParameter, Cursor};
    ///
    /// fn get_large_text(name: &str, conn: &mut Connection<'_>) -> Result<Option<String>, Error> {
    ///     let mut cursor = conn
    ///         .execute("SELECT content FROM LargeFiles WHERE name=?", &name.into_parameter())?
    ///         .expect("Assume select statement creates cursor");
    ///     if let Some(mut row) = cursor.next_row()? {
    ///         let mut buf = Vec::new();
    ///         row.get_text(1, &mut buf)?;
    ///         let ret = String::from_utf8(buf).unwrap();
    ///         Ok(Some(ret))
    ///     } else {
    ///         Ok(None)
    ///     }
    /// }
    /// ```
    ///
    /// # Return
    ///
    /// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
    /// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
    pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
        self.get_variadic::<Text>(col_or_param_num, buf)
    }

    /// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
    /// index starts at `1`. The used encoding is UTF-16.
    ///
    /// # Return
    ///
    /// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
    /// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
    pub fn get_wide_text(
        &mut self,
        col_or_param_num: u16,
        buf: &mut Vec<u16>,
    ) -> Result<bool, Error> {
        self.get_variadic::<WideText>(col_or_param_num, buf)
    }

    /// Retrieves arbitrary large binary data from the row and stores it in the buffer. Column index
    /// starts at `1`.
    ///
    /// # Return
    ///
    /// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
    /// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
    pub fn get_binary(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
        self.get_variadic::<Binary>(col_or_param_num, buf)
    }

    fn get_variadic<K: VarKind>(
        &mut self,
        col_or_param_num: u16,
        buf: &mut Vec<K::Element>,
    ) -> Result<bool, Error> {
        if buf.capacity() == 0 {
            // User did just provide an empty buffer. So it is fair to assume not much domain
            // knowledge has been used to decide its size. We just default to 256 to increase the
            // chance that we get it done with one alloctaion. The buffer size being 0 we need at
            // least 1 anyway. If the capacity is not `0` we'll leave the buffer size untouched as
            // we do not want to prevent users from providing better guessen based on domain
            // knowledge.
            // This also implicitly makes sure that we can at least hold one terminating zero.
            buf.reserve(256);
        }
        // Utilize all of the allocated buffer.
        buf.resize(buf.capacity(), K::ZERO);

        // Did we learn how much capacity we need in the last iteration? We use this only to panic
        // on erroneous implementations of get_data and avoid endless looping until we run out of
        // memory.
        let mut remaining_length_known = false;
        // We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
        // accumulated value size. The target always points to the last window in buf which is going
        // to contain the **next** part of the data, whereas buf contains the entire accumulated
        // value so far.
        let mut target =
            VarCell::<&mut [K::Element], K>::from_buffer(buf.as_mut_slice(), Indicator::NoTotal);
        self.get_data(col_or_param_num, &mut target)?;
        while !target.is_complete() {
            // Amount of payload bytes (excluding terminating zeros) fetched with the last call to
            // get_data.
            let fetched = target
                .len_in_bytes()
                .expect("ODBC driver must always report how many bytes were fetched.");
            match target.indicator() {
                // If Null the value would be complete
                Indicator::Null => unreachable!(),
                // We do not know how large the value is. Let's fetch the data with repeated calls
                // to get_data.
                Indicator::NoTotal => {
                    let old_len = buf.len();
                    // Use an exponential strategy for increasing buffer size.
                    buf.resize(old_len * 2, K::ZERO);
                    let buf_extend = &mut buf[(old_len - K::TERMINATING_ZEROES)..];
                    target = VarCell::<&mut [K::Element], K>::from_buffer(
                        buf_extend,
                        Indicator::NoTotal,
                    );
                }
                // We did not get all of the value in one go, but the data source has been friendly
                // enough to tell us how much is missing.
                Indicator::Length(len) => {
                    if remaining_length_known {
                        panic!(
                            "SQLGetData has been unable to fetch all data, even though the \
                            capacity of the target buffer has been adapted to hold the entire \
                            payload based on the indicator of the last part. You may consider \
                            filing a bug with the ODBC driver you are using."
                        )
                    }
                    remaining_length_known = true;
                    // Amount of bytes missing from the value using get_data, excluding terminating
                    // zero.
                    let still_missing_in_bytes = len - fetched;
                    let still_missing = still_missing_in_bytes / size_of::<K::Element>();
                    let old_len = buf.len();
                    buf.resize(old_len + still_missing, K::ZERO);
                    let buf_extend = &mut buf[(old_len - K::TERMINATING_ZEROES)..];
                    target = VarCell::<&mut [K::Element], K>::from_buffer(
                        buf_extend,
                        Indicator::NoTotal,
                    );
                }
            }
            // Fetch binary data into buffer.
            self.get_data(col_or_param_num, &mut target)?;
        }
        // We did get the complete value, including the terminating zero. Let's resize the buffer to
        // match the retrieved value exactly (excluding terminating zero).
        if let Some(len_in_bytes) = target.indicator().length() {
            // Since the indicator refers to value length without terminating zero, and capacity is
            // including the terminating zero this also implicitly drops the terminating zero at the
            // end of the buffer.
            let shrink_by_bytes = target.capacity_in_bytes() - len_in_bytes;
            let shrink_by_chars = shrink_by_bytes / size_of::<K::Element>();
            buf.resize(buf.len() - shrink_by_chars, K::ZERO);
            Ok(true)
        } else {
            // value is NULL
            buf.clear();
            Ok(false)
        }
    }
}

/// Cursors are used to process and iterate the result sets returned by executing queries. Created
/// by either a prepared query or direct execution. Usually utilized through the [`crate::Cursor`]
/// trait.
pub struct CursorImpl<Stmt: AsStatementRef> {
    /// A statement handle in cursor mode.
    statement: Stmt,
}

impl<S> Drop for CursorImpl<S>
where
    S: AsStatementRef,
{
    fn drop(&mut self) {
        let mut stmt = self.statement.as_stmt_ref();
        if let Err(e) = stmt.close_cursor().into_result(&stmt) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error closing cursor: {e:?}")
            }
        }
    }
}

impl<S> AsStatementRef for CursorImpl<S>
where
    S: AsStatementRef,
{
    fn as_stmt_ref(&mut self) -> StatementRef<'_> {
        self.statement.as_stmt_ref()
    }
}

impl<S> ResultSetMetadata for CursorImpl<S> where S: AsStatementRef {}

impl<S> Cursor for CursorImpl<S>
where
    S: AsStatementRef,
{
    fn bind_buffer<B>(mut self, mut row_set_buffer: B) -> Result<BlockCursor<Self, B>, Error>
    where
        B: RowSetBuffer,
    {
        let stmt = self.statement.as_stmt_ref();
        unsafe {
            bind_row_set_buffer_to_statement(stmt, &mut row_set_buffer)?;
        }
        Ok(BlockCursor::new(row_set_buffer, self))
    }

    fn more_results(self) -> Result<Option<Self>, Error>
    where
        Self: Sized,
    {
        // Consume self without calling drop to avoid calling close_cursor.
        let mut statement = self.into_stmt();
        let mut stmt = statement.as_stmt_ref();

        let has_another_result = unsafe { stmt.more_results() }.into_result_bool(&stmt)?;
        let next = if has_another_result {
            Some(CursorImpl { statement })
        } else {
            None
        };
        Ok(next)
    }
}

impl<S> CursorImpl<S>
where
    S: AsStatementRef,
{
    /// Users of this library are encouraged not to call this constructor directly but rather invoke
    /// [`crate::Connection::execute`] or [`crate::Prepared::execute`] to get a cursor and utilize
    /// it using the [`crate::Cursor`] trait. This method is public so users with an understanding
    /// of the raw ODBC C-API have a way to create a cursor, after they left the safety rails of the
    /// Rust type System, in order to implement a use case not covered yet, by the safe abstractions
    /// within this crate.
    ///
    /// # Safety
    ///
    /// `statement` must be in Cursor state, for the invariants of this type to hold.
    pub unsafe fn new(statement: S) -> Self {
        Self { statement }
    }

    /// Deconstructs the `CursorImpl` without calling drop. This is a way to get to the underlying
    /// statement, while preventing a call to close cursor.
    pub fn into_stmt(self) -> S {
        // We want to move `statement` out of self, which would make self partially uninitialized.
        let dont_drop_me = MaybeUninit::new(self);
        let self_ptr = dont_drop_me.as_ptr();

        // Safety: We know `dont_drop_me` is valid at this point so reading the ptr is okay
        unsafe { ptr::read(&(*self_ptr).statement) }
    }

    pub(crate) fn as_sys(&mut self) -> HStmt {
        self.as_stmt_ref().as_sys()
    }
}

/// A Row set buffer binds row, or column wise buffers to a cursor in order to fill them with row
/// sets with each call to fetch.
///
/// # Safety
///
/// Implementers of this trait must ensure that every pointer bound in `bind_to_cursor` stays valid
/// even if an instance is moved in memory. Bound members should therefore be likely references
/// themselves. To bind stack allocated buffers it is recommended to implement this trait on the
/// reference type instead.
pub unsafe trait RowSetBuffer {
    /// Declares the bind type of the Row set buffer. `0` Means a columnar binding is used. Any non
    /// zero number is interpreted as the size of a single row in a row wise binding style.
    fn bind_type(&self) -> usize;

    /// The batch size for bulk cursors, if retrieving many rows at once.
    fn row_array_size(&self) -> usize;

    /// Mutable reference to the number of fetched rows.
    ///
    /// # Safety
    ///
    /// Implementations of this method must take care that the returned referenced stays valid, even
    /// if `self` should be moved.
    fn mut_num_fetch_rows(&mut self) -> &mut usize;

    /// Binds the buffer either column or row wise to the cursor.
    ///
    /// # Safety
    ///
    /// It's the implementation's responsibility to ensure that all bound buffers are valid until
    /// unbound or the statement handle is deleted.
    unsafe fn bind_colmuns_to_cursor(&mut self, cursor: StatementRef<'_>) -> Result<(), Error>;

    /// Find an indicator larger than the maximum element size of the buffer.
    fn find_truncation(&self) -> Option<TruncationInfo>;
}

/// Returned by [`RowSetBuffer::find_truncation`]. Contains information about the truncation found.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct TruncationInfo {
    /// Length of the untruncated value if known
    pub indicator: Option<usize>,
    /// Zero based buffer index of the column in which the truncation occurred.
    pub buffer_index: usize,
}

unsafe impl<T: RowSetBuffer> RowSetBuffer for &mut T {
    fn bind_type(&self) -> usize {
        (**self).bind_type()
    }

    fn row_array_size(&self) -> usize {
        (**self).row_array_size()
    }

    fn mut_num_fetch_rows(&mut self) -> &mut usize {
        (*self).mut_num_fetch_rows()
    }

    unsafe fn bind_colmuns_to_cursor(&mut self, cursor: StatementRef<'_>) -> Result<(), Error> {
        (*self).bind_colmuns_to_cursor(cursor)
    }

    fn find_truncation(&self) -> Option<TruncationInfo> {
        (**self).find_truncation()
    }
}

/// In order to save on network overhead, it is recommended to use block cursors instead of fetching
/// values individually. This can greatly reduce the time applications need to fetch data. You can
/// create a block cursor by binding preallocated memory to a cursor using [`Cursor::bind_buffer`].
/// A block cursor saves on a lot of IO overhead by fetching an entire set of rows (called *rowset*)
/// at once into the buffer bound to it. Reusing the same buffer for each rowset also saves on
/// allocations. A challange with using block cursors might be database schemas with columns there
/// individual fields can be very large. In these cases developers can choose to:
///
/// 1. Reserve less memory for each individual field than the schema indicates and deciding on a
///    sensible upper bound themselves. This risks truncation of values though, if they are larger
///    than the upper bound. Using [`BlockCursor::fetch_with_truncation_check`] instead of
///    [`Cursor::next_row`] your application can detect these truncations. This is usually the best
///    choice, since individual fields in a table rarely actually take up several GiB of memory.
/// 2. Calculate the number of rows dynamically based on the maximum expected row size.
///    [`crate::buffers::BufferDesc::bytes_per_row`], can be helpful with this task.
/// 3. Not use block cursors and fetch rows slowly with high IO overhead. Calling
///    [`CursorRow::get_data`] and [`CursorRow::get_text`] to fetch large individual values.
///
/// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/develop-app/block-cursors>
pub struct BlockCursor<C: AsStatementRef, B> {
    buffer: B,
    cursor: C,
}

impl<C, B> BlockCursor<C, B>
where
    C: Cursor,
{
    fn new(buffer: B, cursor: C) -> Self {
        Self { buffer, cursor }
    }

    /// Fills the bound buffer with the next row set.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    ///
    /// ```
    /// use odbc_api::{buffers::TextRowSet, Cursor};
    ///
    /// fn print_all_values(mut cursor: impl Cursor) {
    ///     let batch_size = 100;
    ///     let max_string_len = 4000;
    ///     let buffer = TextRowSet::for_cursor(batch_size, &mut cursor, Some(4000)).unwrap();
    ///     let mut cursor = cursor.bind_buffer(buffer).unwrap();
    ///     // Iterate over batches
    ///     while let Some(batch) = cursor.fetch().unwrap() {
    ///         // ... print values in batch ...
    ///     }
    /// }
    /// ```
    pub fn fetch(&mut self) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        self.fetch_with_truncation_check(false)
    }

    /// Fills the bound buffer with the next row set. Should `error_for_truncation` be `true`and any
    /// diagnostic indicate truncation of a value an error is returned.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    ///
    /// Call this method to find out wether there are any truncated values in the batch, without
    /// inspecting all its rows and columns.
    ///
    /// ```
    /// use odbc_api::{buffers::TextRowSet, Cursor};
    ///
    /// fn print_all_values(mut cursor: impl Cursor) {
    ///     let batch_size = 100;
    ///     let max_string_len = 4000;
    ///     let buffer = TextRowSet::for_cursor(batch_size, &mut cursor, Some(4000)).unwrap();
    ///     let mut cursor = cursor.bind_buffer(buffer).unwrap();
    ///     // Iterate over batches
    ///     while let Some(batch) = cursor.fetch_with_truncation_check(true).unwrap() {
    ///         // ... print values in batch ...
    ///     }
    /// }
    /// ```
    pub fn fetch_with_truncation_check(
        &mut self,
        error_for_truncation: bool,
    ) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        let mut stmt = self.cursor.as_stmt_ref();
        unsafe {
            let result = stmt.fetch();
            let has_row =
                error_handling_for_fetch(result, stmt, &self.buffer, error_for_truncation)?;
            Ok(has_row.then_some(&self.buffer))
        }
    }

    /// Unbinds the buffer from the underlying statement handle. Potential usecases for this
    /// function include.
    ///
    /// 1. Binding a different buffer to the "same" cursor after letting it point to the next result
    ///   set obtained with [Cursor::more_results`].
    /// 2. Reusing the same buffer with a different statement.
    pub fn unbind(self) -> Result<(C, B), Error> {
        // In this method we want to deconstruct self and move cursor out of it. We need to
        // negotiate with the compiler a little bit though, since BlockCursor does implement `Drop`.

        // We want to move `cursor` out of self, which would make self partially uninitialized.
        let dont_drop_me = MaybeUninit::new(self);
        let self_ptr = dont_drop_me.as_ptr();

        // Safety: We know `dont_drop_me` is valid at this point so reading the ptr is okay
        let mut cursor = unsafe { ptr::read(&(*self_ptr).cursor) };
        let buffer = unsafe { ptr::read(&(*self_ptr).buffer) };

        // Now that we have cursor out of block cursor, we need to unbind the buffer.
        unbind_buffer_from_cursor(&mut cursor)?;

        Ok((cursor, buffer))
    }
}

impl<C, B> BlockCursor<C, B>
where
    B: RowSetBuffer,
    C: AsStatementRef,
{
    /// Maximum amount of rows fetched from the database in the next call to fetch.
    pub fn row_array_size(&self) -> usize {
        self.buffer.row_array_size()
    }
}

impl<C, B> Drop for BlockCursor<C, B>
where
    C: AsStatementRef,
{
    fn drop(&mut self) {
        if let Err(e) = unbind_buffer_from_cursor(&mut self.cursor) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error unbinding columns: {e:?}")
            }
        }
    }
}

/// The asynchronous sibiling of [`CursorImpl`]. Use this to fetch results in asynchronous code.
///
/// Like [`CursorImpl`] this is an ODBC statement handle in cursor state. However unlike its
/// synchronous sibling this statement handle is in asynchronous polling mode.
pub struct CursorPolling<Stmt: AsStatementRef> {
    /// A statement handle in cursor state with asynchronous mode enabled.
    statement: Stmt,
}

impl<S> CursorPolling<S>
where
    S: AsStatementRef,
{
    /// Users of this library are encouraged not to call this constructor directly. This method is
    /// pubilc so users with an understanding of the raw ODBC C-API have a way to create an
    /// asynchronous cursor, after they left the safety rails of the Rust type System, in order to
    /// implement a use case not covered yet, by the safe abstractions within this crate.
    ///
    /// # Safety
    ///
    /// `statement` must be in Cursor state, for the invariants of this type to hold. Preferable
    /// `statement` should also have asynchrous mode enabled, otherwise constructing a synchronous
    /// [`CursorImpl`] is more suitable.
    pub unsafe fn new(statement: S) -> Self {
        Self { statement }
    }

    /// Binds this cursor to a buffer holding a row set.
    pub fn bind_buffer<B>(
        mut self,
        mut row_set_buffer: B,
    ) -> Result<BlockCursorPolling<Self, B>, Error>
    where
        B: RowSetBuffer,
    {
        let stmt = self.statement.as_stmt_ref();
        unsafe {
            bind_row_set_buffer_to_statement(stmt, &mut row_set_buffer)?;
        }
        Ok(BlockCursorPolling::new(row_set_buffer, self))
    }
}

impl<S> AsStatementRef for CursorPolling<S>
where
    S: AsStatementRef,
{
    fn as_stmt_ref(&mut self) -> StatementRef<'_> {
        self.statement.as_stmt_ref()
    }
}

impl<S> Drop for CursorPolling<S>
where
    S: AsStatementRef,
{
    fn drop(&mut self) {
        let mut stmt = self.statement.as_stmt_ref();
        if let Err(e) = stmt.close_cursor().into_result(&stmt) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error closing cursor: {e:?}")
            }
        }
    }
}

/// Asynchronously iterates in blocks (called row sets) over a result set, filling a buffers with
/// a lot of rows at once, instead of iterating the result set row by row. This is usually much
/// faster. Asynchronous sibiling of [`self::BlockCursor`].
pub struct BlockCursorPolling<C, B>
where
    C: AsStatementRef,
{
    buffer: B,
    cursor: C,
}

impl<C, B> BlockCursorPolling<C, B>
where
    C: AsStatementRef,
{
    fn new(buffer: B, cursor: C) -> Self {
        Self { buffer, cursor }
    }

    /// Fills the bound buffer with the next row set.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    pub async fn fetch(&mut self, sleep: impl Sleep) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        self.fetch_with_truncation_check(false, sleep).await
    }

    /// Fills the bound buffer with the next row set. Should `error_for_truncation` be `true`and any
    /// diagnostic indicate truncation of a value an error is returned.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    ///
    /// Call this method to find out whether there are any truncated values in the batch, without
    /// inspecting all its rows and columns.
    pub async fn fetch_with_truncation_check(
        &mut self,
        error_for_truncation: bool,
        mut sleep: impl Sleep,
    ) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        let mut stmt = self.cursor.as_stmt_ref();
        let result = unsafe { wait_for(|| stmt.fetch(), &mut sleep).await };
        let has_row = error_handling_for_fetch(result, stmt, &self.buffer, error_for_truncation)?;
        Ok(has_row.then_some(&self.buffer))
    }
}

/// Binds a row set buffer to a statment. Implementation is shared between synchronous and
/// asynchronous cursors.
unsafe fn bind_row_set_buffer_to_statement(
    mut stmt: StatementRef<'_>,
    row_set_buffer: &mut impl RowSetBuffer,
) -> Result<(), Error> {
    stmt.set_row_bind_type(row_set_buffer.bind_type())
        .into_result(&stmt)?;
    let size = row_set_buffer.row_array_size();
    stmt.set_row_array_size(size)
        .into_result(&stmt)
        // SAP anywhere has been seen to return with an "invalid attribute" error instead of
        // a success with "option value changed" info. Let us map invalid attributes during
        // setting row set array size to something more precise.
        .provide_context_for_diagnostic(|record, function| {
            if record.state == State::INVALID_ATTRIBUTE_VALUE {
                Error::InvalidRowArraySize { record, size }
            } else {
                Error::Diagnostics { record, function }
            }
        })?;
    stmt.set_num_rows_fetched(row_set_buffer.mut_num_fetch_rows())
        .into_result(&stmt)?;
    row_set_buffer.bind_colmuns_to_cursor(stmt)?;
    Ok(())
}

/// Error handling for bulk fetching is shared between synchronous and asynchronous usecase.
fn error_handling_for_fetch(
    result: SqlResult<()>,
    mut stmt: StatementRef,
    buffer: &impl RowSetBuffer,
    error_for_truncation: bool,
) -> Result<bool, Error> {
    // Only check for truncation if a) the user indicated that he wants to error instead of just
    // ignoring it and if there is at least one diagnostic record. ODBC standard requires a
    // diagnostic record to be there in case of truncation. Sadly we can not rely on this particular
    // record to be there, as the driver could generate a large amount of diagnostic records,
    // while we are limited in the amount we can check. The second check serves as an optimization
    // for the happy path.
    if error_for_truncation && result == SqlResult::SuccessWithInfo(()) {
        if let Some(TruncationInfo {
            indicator,
            buffer_index,
        }) = buffer.find_truncation()
        {
            return Err(Error::TooLargeValueForBuffer {
                indicator,
                buffer_index,
            });
        }
    }

    let has_row = result
        .on_success(|| true)
        .into_result_with(&stmt.as_stmt_ref(), Some(false), None)
        // Oracle's ODBC driver does not support 64Bit integers. Furthermore, it does not
        // tell it to the user when binding parameters, but rather now then we fetch
        // results. The error code returned is `HY004` rather than `HY003` which should
        // be used to indicate invalid buffer types.
        .provide_context_for_diagnostic(|record, function| {
            if record.state == State::INVALID_SQL_DATA_TYPE {
                Error::OracleOdbcDriverDoesNotSupport64Bit(record)
            } else {
                Error::Diagnostics { record, function }
            }
        })?;
    Ok(has_row)
}

impl<C, B> Drop for BlockCursorPolling<C, B>
where
    C: AsStatementRef,
{
    fn drop(&mut self) {
        if let Err(e) = unbind_buffer_from_cursor(&mut self.cursor) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error unbinding columns: {e:?}")
            }
        }
    }
}

/// Unbinds buffer and num_rows_fetched from the cursor. This implementation is shared between
/// unbind and the drop handler, and the synchronous and asynchronous variant.
fn unbind_buffer_from_cursor(cursor: &mut impl AsStatementRef) -> Result<(), Error> {
    // Now that we have cursor out of block cursor, we need to unbind the buffer.
    let mut stmt = cursor.as_stmt_ref();
    stmt.unbind_cols().into_result(&stmt)?;
    stmt.unset_num_rows_fetched().into_result(&stmt)?;
    Ok(())
}