odbc_api/handles/data_type.rs
1use std::num::NonZeroUsize;
2
3use odbc_sys::SqlDataType;
4
5/// For Microsoft SQL Server, but also for Oracle there exists a maximum string length of 4000 for
6/// `NVARCHAR` SQL type.
7pub(crate) const ASSUMED_MAX_LENGTH_OF_W_VARCHAR: usize = 4000;
8
9/// The relational type of the column. Think of it as the type used in the `CREATE TABLE` statement
10/// then creating the database.
11///
12/// There might be a mismatch between the types supported by your database and the types defined in
13/// ODBC. E.g. ODBC does not have a timestamp with timezone type, theras Postgersql and Microsoft
14/// SQL Server both have one. In such cases it is up to the specific ODBC driver what happens.
15/// Microsoft SQL Server return a custom type, with its meaning specific to that driver. PostgreSQL
16/// identifies that column as an ordinary ODBC timestamp.
17#[derive(Clone, Copy, Debug, PartialEq, Eq, Default)]
18/// Enumeration over valid SQL Data Types supported by ODBC
19pub enum DataType {
20 /// The type is not known.
21 #[default]
22 Unknown,
23 /// `Char(n)`. Character string of fixed length.
24 Char {
25 /// Column size in characters (excluding terminating zero).
26 length: Option<NonZeroUsize>,
27 },
28 /// `NChar(n)`. Character string of fixed length.
29 WChar {
30 /// Column size in characters (excluding terminating zero).
31 length: Option<NonZeroUsize>,
32 },
33 /// `Numeric(p,s). Signed, exact, numeric value with a precision p and scale s (1 <= p <= 15; s
34 /// <= p)
35 Numeric {
36 /// Total number of digits.
37 precision: usize,
38 /// Number of decimal digits.
39 scale: i16,
40 },
41 /// `Decimal(p,s)`. Signed, exact, numeric value with a precision of at least p and scale s.
42 /// The maximum precision is driver-defined. (1 <= p <= 15; s <= p)
43 Decimal {
44 /// Total number of digits.
45 precision: usize,
46 /// Number of decimal digits.
47 scale: i16,
48 },
49 /// `Integer`. 32 Bit Integer
50 Integer,
51 /// `Smallint`. 16 Bit Integer
52 SmallInt,
53 /// `Float(p)`. Signed, approximate, numeric value with a binary precision of at least p. The
54 /// maximum precision is driver-defined.
55 ///
56 /// Depending on the implementation binary precision is either 24 (`f32`) or 53 (`f64`).
57 Float { precision: usize },
58 /// `Real`. Signed, approximate, numeric value with a binary precision 24 (zero or absolute
59 /// value 10^-38] to 10^38).
60 Real,
61 /// `Double Precision`. Signed, approximate, numeric value with a binary precision 53 (zero or
62 /// absolute value 10^-308 to 10^308).
63 Double,
64 /// `Varchar(n)`. Variable length character string.
65 Varchar {
66 /// Maximum length of the character string (excluding terminating zero). Whether this
67 /// length is to be interpreted as bytes or Codepoints is ambigious and depends on
68 /// the datasource.
69 ///
70 /// E.g. For Microsoft SQL Server this is the binary length, theras for a MariaDB this
71 /// refers to codepoints in case of UTF-8 encoding. If you need the binary size query the
72 /// octet length for that column instead.
73 ///
74 /// To find out how to interpret this value for a particular datasource you can use the
75 /// `odbcsv` command line tool `list-columns` subcommand and query a Varchar column. If the
76 /// buffer/octet length matches the column size, you can interpret this as the byte length.
77 length: Option<NonZeroUsize>,
78 },
79 /// `NVARCHAR(n)`. Variable length character string. Indicates the use of wide character strings
80 /// and use of UCS2 encoding on the side of the database.
81 WVarchar {
82 /// Maximum length of the character string (excluding terminating zero).
83 length: Option<NonZeroUsize>,
84 },
85 /// `TEXT`. Variable length characeter string for long text objects.
86 LongVarchar {
87 /// Maximum length of the character string (excluding terminating zero). Maximum size
88 /// depends on the capabilities of the driver and datasource. E.g. its 2^31 - 1 for MSSQL.
89 length: Option<NonZeroUsize>,
90 },
91 /// `NVARCHAR(MAX)`. Variable length characeter string for long text objects. Indicates the use
92 /// of wide character strings and the use of UCS2 encoding on the side of the database.
93 WLongVarchar {
94 /// Maximum length of the character string (excluding terminating zero). Maximum size
95 /// depends on the capabilities of the driver and datasource. E.g. its 2^31 - 1 for MSSQL.
96 length: Option<NonZeroUsize>,
97 },
98 /// `BLOB`. Variable length data for long binary objects.
99 LongVarbinary {
100 /// Maximum length of the binary data. Maximum size depends on the capabilities of the
101 /// driver and datasource.
102 length: Option<NonZeroUsize>,
103 },
104 /// `Date`. Year, month, and day fields, conforming to the rules of the Gregorian calendar.
105 Date,
106 /// `Time`. Hour, minute, and second fields, with valid values for hours of 00 to 23, valid
107 /// values for minutes of 00 to 59, and valid values for seconds of 00 to 61. Precision p
108 /// indicates the seconds precision.
109 Time {
110 /// Number of radix ten digits used to represent the timestamp after the decimal points.
111 /// E.g. Milliseconds would be represented by precision 3, Microseconds by 6 and
112 /// Nanoseconds by 9.
113 precision: i16,
114 },
115 /// `Timestamp`. Year, month, day, hour, minute, and second fields, with valid values as
116 /// defined for the Date and Time variants.
117 Timestamp {
118 /// Number of radix ten digits used to represent the timestamp after the decimal points.
119 /// E.g. Milliseconds would be represented by precision 3, Microseconds by 6 and
120 /// Nanoseconds by 9.
121 precision: i16,
122 },
123 /// `BIGINT`. Exact numeric value with precision 19 (if signed) or 20 (if unsigned) and scale 0
124 /// (signed: -2^63 <= n <= 2^63 - 1, unsigned: 0 <= n <= 2^64 - 1). Has no corresponding
125 /// type in SQL-92.
126 BigInt,
127 /// `TINYINT`. Exact numeric value with precision 3 and scale 0 (signed: -128 <= n <= 127,
128 /// unsigned: 0 <= n <= 255)
129 TinyInt,
130 /// `BIT`. Single bit binary data.
131 Bit,
132 /// `VARBINARY(n)`. Type for variable sized binary data.
133 Varbinary { length: Option<NonZeroUsize> },
134 /// `BINARY(n)`. Type for fixed sized binary data.
135 Binary { length: Option<NonZeroUsize> },
136 /// The driver returned a type, but it is not among the other types of these enumeration. This
137 /// is a catchall, in case the library is incomplete, or the data source supports custom or
138 /// non-standard types.
139 Other {
140 /// Type of the column
141 data_type: SqlDataType,
142 /// Size of column element. This is the size used to bind the data type as a paramater.
143 column_size: Option<NonZeroUsize>,
144 /// Decimal digits returned for the column element. Exact meaning if any depends on the
145 /// `data_type` field. Like `column_size` this is used then using the [`DataType`] to bind
146 /// data as a parameter.
147 decimal_digits: i16,
148 },
149}
150
151impl DataType {
152 /// This constructor is useful to create an instance of the enumeration using values returned by
153 /// ODBC Api calls like `SQLDescribeCol`, rather than just initializing a variant directly.
154 pub fn new(data_type: SqlDataType, column_size: usize, decimal_digits: i16) -> Self {
155 match data_type {
156 SqlDataType::UNKNOWN_TYPE => DataType::Unknown,
157 SqlDataType::EXT_LONG_VARCHAR => DataType::LongVarchar {
158 length: NonZeroUsize::new(column_size),
159 },
160 SqlDataType::EXT_W_LONG_VARCHAR => DataType::WLongVarchar {
161 length: NonZeroUsize::new(column_size),
162 },
163 SqlDataType::EXT_BINARY => DataType::Binary {
164 length: NonZeroUsize::new(column_size),
165 },
166 SqlDataType::EXT_VAR_BINARY => DataType::Varbinary {
167 length: NonZeroUsize::new(column_size),
168 },
169 SqlDataType::EXT_LONG_VAR_BINARY => DataType::LongVarbinary {
170 length: NonZeroUsize::new(column_size),
171 },
172 SqlDataType::CHAR => DataType::Char {
173 length: NonZeroUsize::new(column_size),
174 },
175 SqlDataType::VARCHAR => DataType::Varchar {
176 length: NonZeroUsize::new(column_size),
177 },
178 SqlDataType::NUMERIC => DataType::Numeric {
179 precision: column_size,
180 scale: decimal_digits,
181 },
182 SqlDataType::DECIMAL => DataType::Decimal {
183 precision: column_size,
184 scale: decimal_digits,
185 },
186 SqlDataType::INTEGER => DataType::Integer,
187 SqlDataType::SMALLINT => DataType::SmallInt,
188 SqlDataType::FLOAT => DataType::Float {
189 precision: column_size,
190 },
191 SqlDataType::REAL => DataType::Real,
192 SqlDataType::DOUBLE => DataType::Double,
193 SqlDataType::DATE => DataType::Date,
194 SqlDataType::TIME => DataType::Time {
195 precision: decimal_digits,
196 },
197 SqlDataType::TIMESTAMP => DataType::Timestamp {
198 precision: decimal_digits,
199 },
200 SqlDataType::EXT_BIG_INT => DataType::BigInt,
201 SqlDataType::EXT_TINY_INT => DataType::TinyInt,
202 SqlDataType::EXT_BIT => DataType::Bit,
203 SqlDataType::EXT_W_VARCHAR => DataType::WVarchar {
204 length: NonZeroUsize::new(column_size),
205 },
206 SqlDataType::EXT_W_CHAR => DataType::WChar {
207 length: NonZeroUsize::new(column_size),
208 },
209 other => DataType::Other {
210 data_type: other,
211 column_size: NonZeroUsize::new(column_size),
212 decimal_digits,
213 },
214 }
215 }
216
217 /// The associated consicse SQL `data_type` discriminator for this variant.
218 pub fn data_type(&self) -> SqlDataType {
219 match self {
220 DataType::Unknown => SqlDataType::UNKNOWN_TYPE,
221 DataType::Binary { .. } => SqlDataType::EXT_BINARY,
222 DataType::Varbinary { .. } => SqlDataType::EXT_VAR_BINARY,
223 DataType::LongVarbinary { .. } => SqlDataType::EXT_LONG_VAR_BINARY,
224 DataType::Char { .. } => SqlDataType::CHAR,
225 DataType::Numeric { .. } => SqlDataType::NUMERIC,
226 DataType::Decimal { .. } => SqlDataType::DECIMAL,
227 DataType::Integer => SqlDataType::INTEGER,
228 DataType::SmallInt => SqlDataType::SMALLINT,
229 DataType::Float { .. } => SqlDataType::FLOAT,
230 DataType::Real => SqlDataType::REAL,
231 DataType::Double => SqlDataType::DOUBLE,
232 DataType::Varchar { .. } => SqlDataType::VARCHAR,
233 DataType::LongVarchar { .. } => SqlDataType::EXT_LONG_VARCHAR,
234 DataType::WLongVarchar { .. } => SqlDataType::EXT_W_LONG_VARCHAR,
235 DataType::Date => SqlDataType::DATE,
236 DataType::Time { .. } => SqlDataType::TIME,
237 DataType::Timestamp { .. } => SqlDataType::TIMESTAMP,
238 DataType::BigInt => SqlDataType::EXT_BIG_INT,
239 DataType::TinyInt => SqlDataType::EXT_TINY_INT,
240 DataType::Bit => SqlDataType::EXT_BIT,
241 DataType::WVarchar { .. } => SqlDataType::EXT_W_VARCHAR,
242 DataType::WChar { .. } => SqlDataType::EXT_W_CHAR,
243 DataType::Other { data_type, .. } => *data_type,
244 }
245 }
246
247 // Return the column size, as it is required to bind the data type as a parameter. Fixed sized
248 // types are mapped to `None` and should be bound using `0`. See also
249 // [crates::Cursor::describe_col]. Variadic types without upper bound are also mapped to `None`.
250 pub fn column_size(&self) -> Option<NonZeroUsize> {
251 match self {
252 DataType::Unknown
253 | DataType::Integer
254 | DataType::SmallInt
255 | DataType::Real
256 | DataType::Double
257 | DataType::Date
258 | DataType::Time { .. }
259 | DataType::Timestamp { .. }
260 | DataType::BigInt
261 | DataType::TinyInt
262 | DataType::Bit => None,
263 DataType::Char { length }
264 | DataType::Varchar { length }
265 | DataType::Varbinary { length }
266 | DataType::LongVarbinary { length }
267 | DataType::Binary { length }
268 | DataType::WChar { length }
269 | DataType::WVarchar { length }
270 | DataType::WLongVarchar { length }
271 | DataType::LongVarchar { length } => *length,
272 DataType::Float { precision, .. }
273 | DataType::Numeric { precision, .. }
274 | DataType::Decimal { precision, .. } => NonZeroUsize::new(*precision),
275 DataType::Other { column_size, .. } => *column_size,
276 }
277 }
278
279 /// Return the number of decimal digits as required to bind the data type as a parameter.
280 pub fn decimal_digits(&self) -> i16 {
281 match self {
282 DataType::Unknown
283 | DataType::Char { .. }
284 | DataType::Integer
285 | DataType::SmallInt
286 | DataType::Float { .. }
287 | DataType::Real
288 | DataType::Double
289 | DataType::Varchar { .. }
290 | DataType::WVarchar { .. }
291 | DataType::WChar { .. }
292 | DataType::Varbinary { .. }
293 | DataType::LongVarbinary { .. }
294 | DataType::Binary { .. }
295 | DataType::WLongVarchar { .. }
296 | DataType::LongVarchar { .. }
297 | DataType::Date
298 | DataType::BigInt
299 | DataType::TinyInt
300 | DataType::Bit => 0,
301 DataType::Numeric { scale, .. } | DataType::Decimal { scale, .. } => *scale,
302 DataType::Time { precision } | DataType::Timestamp { precision } => *precision,
303 DataType::Other { decimal_digits, .. } => *decimal_digits,
304 }
305 }
306
307 /// The maximum number of characters needed to display data in character form.
308 ///
309 /// See: <https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/display-size>
310 pub fn display_size(&self) -> Option<NonZeroUsize> {
311 match self {
312 DataType::Unknown
313 | DataType::Other {
314 data_type: _,
315 column_size: _,
316 decimal_digits: _,
317 } => None,
318 // Each binary byte is represented by a 2-digit hexadecimal number.
319 DataType::Varbinary { length }
320 | DataType::Binary { length }
321 | DataType::LongVarbinary { length } => {
322 length.map(|l| l.get() * 2).and_then(NonZeroUsize::new)
323 }
324 // The defined (for fixed types) or maximum (for variable types) number of characters
325 // needed to display the data in character form.
326 DataType::Varchar { length }
327 | DataType::WVarchar { length }
328 | DataType::WChar { length }
329 | DataType::Char { length }
330 | DataType::WLongVarchar { length }
331 | DataType::LongVarchar { length } => *length,
332 // The precision of the column plus 2 (a sign, precision digits, and a decimal point).
333 // For example, the display size of a column defined as NUMERIC(10,3) is 12.
334 DataType::Numeric {
335 precision,
336 scale: _,
337 }
338 | DataType::Decimal {
339 precision,
340 scale: _,
341 } => NonZeroUsize::new(precision + 2),
342 // 11 if signed (a sign and 10 digits) or 10 if unsigned (10 digits).
343 DataType::Integer => NonZeroUsize::new(11),
344 // 6 if signed (a sign and 5 digits) or 5 if unsigned (5 digits).
345 DataType::SmallInt => NonZeroUsize::new(6),
346 // 24 (a sign, 15 digits, a decimal point, the letter E, a sign, and 3 digits).
347 DataType::Float { .. } | DataType::Double => NonZeroUsize::new(24),
348 // 14 (a sign, 7 digits, a decimal point, the letter E, a sign, and 2 digits).
349 DataType::Real => NonZeroUsize::new(14),
350 // 10 (a date in the format yyyy-mm-dd).
351 DataType::Date => NonZeroUsize::new(10),
352 // 8 (a time in the format hh:mm:ss)
353 // or
354 // 9 + s (a time in the format hh:mm:ss[.fff...], where s is the fractional seconds
355 // precision).
356 DataType::Time { precision } => NonZeroUsize::new(if *precision == 0 {
357 8
358 } else {
359 9 + *precision as usize
360 }),
361 // 19 (for a timestamp in the yyyy-mm-dd hh:mm:ss format)
362 // or
363 // 20 + s (for a timestamp in the yyyy-mm-dd hh:mm:ss[.fff...] format, where s is the
364 // fractional seconds precision).
365 DataType::Timestamp { precision } => NonZeroUsize::new(if *precision == 0 {
366 19
367 } else {
368 20 + *precision as usize
369 }),
370 // 20 (a sign and 19 digits if signed or 20 digits if unsigned).
371 DataType::BigInt => NonZeroUsize::new(20),
372 // 4 if signed (a sign and 3 digits) or 3 if unsigned (3 digits).
373 DataType::TinyInt => NonZeroUsize::new(4),
374 // 1 digit.
375 DataType::Bit => NonZeroUsize::new(1),
376 }
377 }
378
379 /// The maximum length of the UTF-8 representation in bytes.
380 ///
381 /// ```
382 /// use odbc_api::DataType;
383 /// use std::num::NonZeroUsize;
384 ///
385 /// let nz = NonZeroUsize::new;
386 /// // Character set data types length is multiplied by four.
387 /// assert_eq!(DataType::Varchar { length: nz(10) }.utf8_len(), nz(40));
388 /// assert_eq!(DataType::Char { length: nz(10) }.utf8_len(), nz(40));
389 /// assert_eq!(DataType::WVarchar { length: nz(10) }.utf8_len(), nz(40));
390 /// assert_eq!(DataType::WChar { length: nz(10) }.utf8_len(), nz(40));
391 /// assert_eq!(DataType::LongVarchar { length: nz(10) }.utf8_len(), nz(40));
392 /// assert_eq!(DataType::WLongVarchar { length: nz(10) }.utf8_len(), nz(40));
393 /// // For other types return value is identical to display size as they are assumed to be
394 /// // entirely representable with ASCII characters.
395 /// assert_eq!(DataType::Numeric { precision: 10, scale: 3}.utf8_len(), nz(10 + 2));
396 /// ```
397 pub fn utf8_len(&self) -> Option<NonZeroUsize> {
398 match self {
399 // One character may need up to four bytes to be represented in utf-8.
400 DataType::Varchar { length }
401 | DataType::WVarchar { length }
402 | DataType::Char { length }
403 | DataType::WChar { length }
404 | DataType::LongVarchar { length }
405 | DataType::WLongVarchar { length } => {
406 length.map(|l| l.get() * 4).and_then(NonZeroUsize::new)
407 }
408 other => other.display_size(),
409 }
410 }
411
412 /// The maximum length of the UTF-16 representation in 2-Byte characters.
413 ///
414 /// ```
415 /// use odbc_api::DataType;
416 /// use std::num::NonZeroUsize;
417 ///
418 /// let nz = NonZeroUsize::new;
419 ///
420 /// // Character set data types length is multiplied by two.
421 /// assert_eq!(DataType::Varchar { length: nz(10) }.utf16_len(), nz(20));
422 /// assert_eq!(DataType::Char { length: nz(10) }.utf16_len(), nz(20));
423 /// assert_eq!(DataType::WVarchar { length: nz(10) }.utf16_len(), nz(20));
424 /// assert_eq!(DataType::WChar { length: nz(10) }.utf16_len(), nz(20));
425 /// assert_eq!(DataType::LongVarchar { length: nz(10) }.utf16_len(), nz(20));
426 /// assert_eq!(DataType::WLongVarchar { length: nz(10) }.utf16_len(), nz(20));
427 /// // For other types return value is identical to display size as they are assumed to be
428 /// // entirely representable with ASCII characters.
429 /// assert_eq!(DataType::Numeric { precision: 10, scale: 3}.utf16_len(), nz(10 + 2));
430 /// ```
431 pub fn utf16_len(&self) -> Option<NonZeroUsize> {
432 match self {
433 // One character may need up to two u16 to be represented in utf-16.
434 DataType::Varchar { length }
435 | DataType::WVarchar { length }
436 | DataType::WChar { length }
437 | DataType::Char { length }
438 | DataType::LongVarchar { length }
439 | DataType::WLongVarchar { length } => {
440 length.map(|l| l.get() * 2).and_then(NonZeroUsize::new)
441 }
442 other => other.display_size(),
443 }
444 }
445}