odbc_api/buffers/columnar.rs
1use std::{
2 collections::HashSet,
3 num::NonZeroUsize,
4 str::{from_utf8, Utf8Error},
5};
6
7use crate::{
8 columnar_bulk_inserter::BoundInputSlice,
9 cursor::TruncationInfo,
10 fixed_sized::Pod,
11 handles::{CDataMut, Statement, StatementRef},
12 parameter::WithDataType,
13 result_set_metadata::utf8_display_sizes,
14 Error, ResultSetMetadata, RowSetBuffer,
15};
16
17use super::{Indicator, TextColumn};
18
19impl<C: ColumnBuffer> ColumnarBuffer<C> {
20 /// Create a new instance from columns with unique indicies. Capacity of the buffer will be the
21 /// minimum capacity of the columns. The constructed buffer is always empty (i.e. the number of
22 /// valid rows is considered to be zero).
23 ///
24 /// You do not want to call this constructor directly unless you want to provide your own buffer
25 /// implentation. Most users of this crate may want to use the constructors like
26 /// [`crate::buffers::ColumnarAnyBuffer::from_descs`] or
27 /// [`crate::buffers::TextRowSet::from_max_str_lens`] instead.
28 pub fn new(columns: Vec<(u16, C)>) -> Self {
29 // Assert capacity
30 let capacity = columns
31 .iter()
32 .map(|(_, col)| col.capacity())
33 .min()
34 .unwrap_or(0);
35
36 // Assert uniqueness of indices
37 let mut indices = HashSet::new();
38 if columns
39 .iter()
40 .any(move |&(col_index, _)| !indices.insert(col_index))
41 {
42 panic!("Column indices must be unique.")
43 }
44
45 unsafe { Self::new_unchecked(capacity, columns) }
46 }
47
48 /// # Safety
49 ///
50 /// * Indices must be unique
51 /// * Columns all must have enough `capacity`.
52 pub unsafe fn new_unchecked(capacity: usize, columns: Vec<(u16, C)>) -> Self {
53 ColumnarBuffer {
54 num_rows: Box::new(0),
55 row_capacity: capacity,
56 columns,
57 }
58 }
59
60 /// Number of valid rows in the buffer.
61 pub fn num_rows(&self) -> usize {
62 *self.num_rows
63 }
64
65 /// Return the number of columns in the row set.
66 pub fn num_cols(&self) -> usize {
67 self.columns.len()
68 }
69
70 /// Use this method to gain read access to the actual column data.
71 ///
72 /// # Parameters
73 ///
74 /// * `buffer_index`: Please note that the buffer index is not identical to the ODBC column
75 /// index. For one it is zero based. It also indexes the buffer bound, and not the columns of
76 /// the output result set. This is important, because not every column needs to be bound. Some
77 /// columns may simply be ignored. That being said, if every column of the output is bound in
78 /// the buffer, in the same order in which they are enumerated in the result set, the
79 /// relationship between column index and buffer index is `buffer_index = column_index - 1`.
80 pub fn column(&self, buffer_index: usize) -> C::View<'_> {
81 self.columns[buffer_index].1.view(*self.num_rows)
82 }
83}
84
85unsafe impl<C> RowSetBuffer for ColumnarBuffer<C>
86where
87 C: ColumnBuffer,
88{
89 fn bind_type(&self) -> usize {
90 0 // Specify columnar binding
91 }
92
93 fn row_array_size(&self) -> usize {
94 self.row_capacity
95 }
96
97 fn mut_num_fetch_rows(&mut self) -> &mut usize {
98 self.num_rows.as_mut()
99 }
100
101 unsafe fn bind_colmuns_to_cursor(&mut self, mut cursor: StatementRef<'_>) -> Result<(), Error> {
102 for (col_number, column) in &mut self.columns {
103 cursor.bind_col(*col_number, column).into_result(&cursor)?;
104 }
105 Ok(())
106 }
107
108 fn find_truncation(&self) -> Option<TruncationInfo> {
109 self.columns
110 .iter()
111 .enumerate()
112 .find_map(|(buffer_index, (_col_index, col_buffer))| {
113 col_buffer
114 .has_truncated_values(*self.num_rows)
115 .map(|indicator| TruncationInfo {
116 indicator: indicator.length(),
117 buffer_index,
118 })
119 })
120 }
121}
122
123/// A columnar buffer intended to be bound with [crate::Cursor::bind_buffer] in order to obtain
124/// results from a cursor.
125///
126/// Binds to the result set column wise. This is usually helpful in dataengineering or data sciense
127/// tasks. This buffer type can be used in situations there the schema of the queried data is known
128/// at compile time, as well as for generic applications which do work with wide range of different
129/// data.
130///
131/// # Example: Fetching results column wise with `ColumnarBuffer`.
132///
133/// Consider querying a table with two columns `year` and `name`.
134///
135/// ```no_run
136/// use odbc_api::{
137/// Environment, Cursor, ConnectionOptions,
138/// buffers::{AnySlice, BufferDesc, Item, ColumnarAnyBuffer},
139/// };
140///
141/// let env = Environment::new()?;
142///
143/// let batch_size = 1000; // Maximum number of rows in each row set
144/// let buffer_description = [
145/// // We know year to be a Nullable SMALLINT
146/// BufferDesc::I16 { nullable: true },
147/// // and name to be a required VARCHAR
148/// BufferDesc::Text { max_str_len: 255 },
149/// ];
150///
151/// /// Creates a columnar buffer fitting the buffer description with the capacity of `batch_size`.
152/// let mut buffer = ColumnarAnyBuffer::from_descs(batch_size, buffer_description);
153///
154/// let mut conn = env.connect(
155/// "YourDatabase", "SA", "My@Test@Password1",
156/// ConnectionOptions::default(),
157/// )?;
158/// if let Some(cursor) = conn.execute("SELECT year, name FROM Birthdays;", ())? {
159/// // Bind buffer to cursor. We bind the buffer as a mutable reference here, which makes it
160/// // easier to reuse for other queries, but we could have taken ownership.
161/// let mut row_set_cursor = cursor.bind_buffer(&mut buffer)?;
162/// // Loop over row sets
163/// while let Some(row_set) = row_set_cursor.fetch()? {
164/// // Process years in row set
165/// let year_col = row_set.column(0);
166/// for year in i16::as_nullable_slice(year_col)
167/// .expect("Year column buffer expected to be nullable Int")
168/// {
169/// // Iterate over `Option<i16>` with it ..
170/// }
171/// // Process names in row set
172/// let name_col = row_set.column(1);
173/// for name in name_col
174/// .as_text_view()
175/// .expect("Name column buffer expected to be text")
176/// .iter()
177/// {
178/// // Iterate over `Option<&CStr> ..
179/// }
180/// }
181/// }
182/// # Ok::<(), odbc_api::Error>(())
183/// ```
184///
185/// This second examples changes two things, we do not know the schema in advance and use the
186/// SQL DataType to determine the best fit for the buffers. Also we want to do everything in a
187/// function and return a `Cursor` with an already bound buffer. This approach is best if you have
188/// few and very long query, so the overhead of allocating buffers is negligible and you want to
189/// have an easier time with the borrow checker.
190///
191/// ```no_run
192/// use odbc_api::{
193/// Connection, BlockCursor, Error, Cursor, Nullability, ResultSetMetadata,
194/// buffers::{ AnyBuffer, BufferDesc, ColumnarAnyBuffer, ColumnarBuffer }
195/// };
196///
197/// fn get_birthdays<'a>(conn: &'a mut Connection)
198/// -> Result<BlockCursor<impl Cursor + 'a, ColumnarAnyBuffer>, Error>
199/// {
200/// let mut cursor = conn.execute("SELECT year, name FROM Birthdays;", ())?.unwrap();
201/// let mut column_description = Default::default();
202/// let buffer_description : Vec<_> = (0..cursor.num_result_cols()?).map(|index| {
203/// cursor.describe_col(index as u16 + 1, &mut column_description)?;
204/// let nullable = matches!(
205/// column_description.nullability,
206/// Nullability::Unknown | Nullability::Nullable
207/// );
208/// let desc = BufferDesc::from_data_type(
209/// column_description.data_type,
210/// nullable
211/// ).unwrap_or(BufferDesc::Text{ max_str_len: 255 });
212/// Ok(desc)
213/// }).collect::<Result<_, Error>>()?;
214///
215/// // Row set size of 5000 rows.
216/// let buffer = ColumnarAnyBuffer::from_descs(5000, buffer_description);
217/// // Bind buffer and take ownership over it.
218/// cursor.bind_buffer(buffer)
219/// }
220/// ```
221pub struct ColumnarBuffer<C> {
222 /// A mutable pointer to num_rows_fetched is passed to the C-API. It is used to write back the
223 /// number of fetched rows. `num_rows` is heap allocated, so the pointer is not invalidated,
224 /// even if the `ColumnarBuffer` instance is moved in memory.
225 num_rows: Box<usize>,
226 /// aka: batch size, row array size
227 row_capacity: usize,
228 /// Column index and bound buffer
229 columns: Vec<(u16, C)>,
230}
231
232/// A buffer for a single column intended to be used together with [`ColumnarBuffer`].
233///
234/// # Safety
235///
236/// Views must not allow access to unintialized / invalid rows.
237pub unsafe trait ColumnBuffer: CDataMut {
238 /// Immutable view on the column data. Used in safe abstractions. User must not be able to
239 /// access uninitialized or invalid memory of the buffer through this interface.
240 type View<'a>
241 where
242 Self: 'a;
243
244 /// Num rows may not exceed the actual amount of valid num_rows filled by the ODBC API. The
245 /// column buffer does not know how many elements were in the last row group, and therefore can
246 /// not guarantee the accessed element to be valid and in a defined state. It also can not panic
247 /// on accessing an undefined element.
248 fn view(&self, valid_rows: usize) -> Self::View<'_>;
249
250 /// Fills the column with the default representation of values, between `from` and `to` index.
251 fn fill_default(&mut self, from: usize, to: usize);
252
253 /// Current capacity of the column
254 fn capacity(&self) -> usize;
255
256 /// `Some` if any value is truncated in the range [0, num_rows).
257 ///
258 /// After fetching data we may want to know if any value has been truncated due to the buffer
259 /// not being able to hold elements of that size. This method checks the indicator buffer
260 /// element wise.
261 fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator>;
262}
263
264unsafe impl<T> ColumnBuffer for WithDataType<T>
265where
266 T: ColumnBuffer,
267{
268 type View<'a>
269 = T::View<'a>
270 where
271 T: 'a;
272
273 fn view(&self, valid_rows: usize) -> T::View<'_> {
274 self.value.view(valid_rows)
275 }
276
277 fn fill_default(&mut self, from: usize, to: usize) {
278 self.value.fill_default(from, to)
279 }
280
281 fn capacity(&self) -> usize {
282 self.value.capacity()
283 }
284
285 fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
286 self.value.has_truncated_values(num_rows)
287 }
288}
289
290unsafe impl<'a, T> BoundInputSlice<'a> for WithDataType<T>
291where
292 T: BoundInputSlice<'a>,
293{
294 type SliceMut = T::SliceMut;
295
296 unsafe fn as_view_mut(
297 &'a mut self,
298 parameter_index: u16,
299 stmt: StatementRef<'a>,
300 ) -> Self::SliceMut {
301 self.value.as_view_mut(parameter_index, stmt)
302 }
303}
304
305/// This row set binds a string buffer to each column, which is large enough to hold the maximum
306/// length string representation for each element in the row set at once.
307///
308/// # Example
309///
310/// ```no_run
311/// //! A program executing a query and printing the result as csv to standard out. Requires
312/// //! `anyhow` and `csv` crate.
313///
314/// use anyhow::Error;
315/// use odbc_api::{buffers::TextRowSet, Cursor, Environment, ConnectionOptions, ResultSetMetadata};
316/// use std::{
317/// ffi::CStr,
318/// io::{stdout, Write},
319/// path::PathBuf,
320/// };
321///
322/// /// Maximum number of rows fetched with one row set. Fetching batches of rows is usually much
323/// /// faster than fetching individual rows.
324/// const BATCH_SIZE: usize = 5000;
325///
326/// fn main() -> Result<(), Error> {
327/// // Write csv to standard out
328/// let out = stdout();
329/// let mut writer = csv::Writer::from_writer(out);
330///
331/// // We know this is going to be the only ODBC environment in the entire process, so this is
332/// // safe.
333/// let environment = unsafe { Environment::new() }?;
334///
335/// // Connect using a DSN. Alternatively we could have used a connection string
336/// let mut connection = environment.connect(
337/// "DataSourceName",
338/// "Username",
339/// "Password",
340/// ConnectionOptions::default(),
341/// )?;
342///
343/// // Execute a one of query without any parameters.
344/// match connection.execute("SELECT * FROM TableName", ())? {
345/// Some(mut cursor) => {
346/// // Write the column names to stdout
347/// let mut headline : Vec<String> = cursor.column_names()?.collect::<Result<_,_>>()?;
348/// writer.write_record(headline)?;
349///
350/// // Use schema in cursor to initialize a text buffer large enough to hold the largest
351/// // possible strings for each column up to an upper limit of 4KiB
352/// let mut buffers = TextRowSet::for_cursor(BATCH_SIZE, &mut cursor, Some(4096))?;
353/// // Bind the buffer to the cursor. It is now being filled with every call to fetch.
354/// let mut row_set_cursor = cursor.bind_buffer(&mut buffers)?;
355///
356/// // Iterate over batches
357/// while let Some(batch) = row_set_cursor.fetch()? {
358/// // Within a batch, iterate over every row
359/// for row_index in 0..batch.num_rows() {
360/// // Within a row iterate over every column
361/// let record = (0..batch.num_cols()).map(|col_index| {
362/// batch
363/// .at(col_index, row_index)
364/// .unwrap_or(&[])
365/// });
366/// // Writes row as csv
367/// writer.write_record(record)?;
368/// }
369/// }
370/// }
371/// None => {
372/// eprintln!(
373/// "Query came back empty. No output has been created."
374/// );
375/// }
376/// }
377///
378/// Ok(())
379/// }
380/// ```
381pub type TextRowSet = ColumnarBuffer<TextColumn<u8>>;
382
383impl TextRowSet {
384 /// The resulting text buffer is not in any way tied to the cursor, other than that its buffer
385 /// sizes a tailor fitted to result set the cursor is iterating over.
386 ///
387 /// This method performs fallible buffer allocations, if no upper bound is set, so you may see
388 /// a speedup, by setting an upper bound using `max_str_limit`.
389 ///
390 ///
391 /// # Parameters
392 ///
393 /// * `batch_size`: The maximum number of rows the buffer is able to hold.
394 /// * `cursor`: Used to query the display size for each column of the row set. For character
395 /// data the length in characters is multiplied by 4 in order to have enough space for 4 byte
396 /// utf-8 characters. This is a pessimization for some data sources (e.g. SQLite 3) which do
397 /// interpret the size of a `VARCHAR(5)` column as 5 bytes rather than 5 characters.
398 /// * `max_str_limit`: Some queries make it hard to estimate a sensible upper bound and
399 /// sometimes drivers are just not that good at it. This argument allows you to specify an
400 /// upper bound for the length of character data. Any size reported by the driver is capped to
401 /// this value. In case the upper bound can not inferred by the metadata reported by the
402 /// driver the element size is set to this upper bound, too.
403 pub fn for_cursor(
404 batch_size: usize,
405 cursor: &mut impl ResultSetMetadata,
406 max_str_limit: Option<usize>,
407 ) -> Result<TextRowSet, Error> {
408 let buffers = utf8_display_sizes(cursor)?
409 .enumerate()
410 .map(|(buffer_index, reported_len)| {
411 let buffer_index = buffer_index as u16;
412 let col_index = buffer_index + 1;
413 let max_str_len = reported_len?;
414 let buffer = if let Some(upper_bound) = max_str_limit {
415 let max_str_len = max_str_len
416 .map(NonZeroUsize::get)
417 .unwrap_or(upper_bound)
418 .min(upper_bound);
419 TextColumn::new(batch_size, max_str_len)
420 } else {
421 let max_str_len = max_str_len.map(NonZeroUsize::get).ok_or(
422 Error::TooLargeColumnBufferSize {
423 buffer_index,
424 num_elements: batch_size,
425 element_size: usize::MAX,
426 },
427 )?;
428 TextColumn::try_new(batch_size, max_str_len).map_err(|source| {
429 Error::TooLargeColumnBufferSize {
430 buffer_index,
431 num_elements: source.num_elements,
432 element_size: source.element_size,
433 }
434 })?
435 };
436
437 Ok::<_, Error>((col_index, buffer))
438 })
439 .collect::<Result<_, _>>()?;
440 Ok(TextRowSet {
441 row_capacity: batch_size,
442 num_rows: Box::new(0),
443 columns: buffers,
444 })
445 }
446
447 /// Creates a text buffer large enough to hold `batch_size` rows with one column for each item
448 /// `max_str_lengths` of respective size.
449 pub fn from_max_str_lens(
450 row_capacity: usize,
451 max_str_lengths: impl IntoIterator<Item = usize>,
452 ) -> Result<Self, Error> {
453 let buffers = max_str_lengths
454 .into_iter()
455 .enumerate()
456 .map(|(index, max_str_len)| {
457 Ok::<_, Error>((
458 (index + 1).try_into().unwrap(),
459 TextColumn::try_new(row_capacity, max_str_len)
460 .map_err(|source| source.add_context(index.try_into().unwrap()))?,
461 ))
462 })
463 .collect::<Result<_, _>>()?;
464 Ok(TextRowSet {
465 row_capacity,
466 num_rows: Box::new(0),
467 columns: buffers,
468 })
469 }
470
471 /// Access the element at the specified position in the row set.
472 pub fn at(&self, buffer_index: usize, row_index: usize) -> Option<&[u8]> {
473 assert!(row_index < *self.num_rows);
474 self.columns[buffer_index].1.value_at(row_index)
475 }
476
477 /// Access the element at the specified position in the row set.
478 pub fn at_as_str(&self, col_index: usize, row_index: usize) -> Result<Option<&str>, Utf8Error> {
479 self.at(col_index, row_index).map(from_utf8).transpose()
480 }
481
482 /// Indicator value at the specified position. Useful to detect truncation of data.
483 ///
484 /// # Example
485 ///
486 /// ```
487 /// use odbc_api::buffers::{Indicator, TextRowSet};
488 ///
489 /// fn is_truncated(buffer: &TextRowSet, col_index: usize, row_index: usize) -> bool {
490 /// match buffer.indicator_at(col_index, row_index) {
491 /// // There is no value, therefore there is no value not fitting in the column buffer.
492 /// Indicator::Null => false,
493 /// // The value did not fit into the column buffer, we do not even know, by how much.
494 /// Indicator::NoTotal => true,
495 /// Indicator::Length(total_length) => {
496 /// // If the maximum string length is shorter than the values total length, the
497 /// // has been truncated to fit into the buffer.
498 /// buffer.max_len(col_index) < total_length
499 /// }
500 /// }
501 /// }
502 /// ```
503 pub fn indicator_at(&self, buf_index: usize, row_index: usize) -> Indicator {
504 assert!(row_index < *self.num_rows);
505 self.columns[buf_index].1.indicator_at(row_index)
506 }
507
508 /// Maximum length in bytes of elements in a column.
509 pub fn max_len(&self, buf_index: usize) -> usize {
510 self.columns[buf_index].1.max_len()
511 }
512}
513
514unsafe impl<T> ColumnBuffer for Vec<T>
515where
516 T: Pod,
517{
518 type View<'a> = &'a [T];
519
520 fn view(&self, valid_rows: usize) -> &[T] {
521 &self[..valid_rows]
522 }
523
524 fn fill_default(&mut self, from: usize, to: usize) {
525 for item in &mut self[from..to] {
526 *item = Default::default();
527 }
528 }
529
530 fn capacity(&self) -> usize {
531 self.len()
532 }
533
534 fn has_truncated_values(&self, _num_rows: usize) -> Option<Indicator> {
535 None
536 }
537}
538
539#[cfg(test)]
540mod tests {
541
542 use crate::buffers::{BufferDesc, ColumnarAnyBuffer};
543
544 #[test]
545 #[should_panic(expected = "Column indices must be unique.")]
546 fn assert_unique_column_indices() {
547 let bd = BufferDesc::I32 { nullable: false };
548 ColumnarAnyBuffer::from_descs_and_indices(1, [(1, bd), (2, bd), (1, bd)].iter().cloned());
549 }
550}