1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
//! OpenCL-accelerated 2D convolutions.
//!
//! [Convolution] is a fundamental building block in signal processing. This crate is focused
//! on 2D convolutions (i.e., the signal is a still image) in the context of [deep learning]
//! (more precisely, [convolutional neural networks][cnn]).
//! The second requirement means that the convolution filter may contain many (order of hundreds)
//! filters; and the input may contain many channels (order of hundreds or thousands), rather
//! than traditional 3 or 4. Computing such convolutions is computationally heavy and can be
//! effectively accelerated with the help of [OpenCL].
//!
//! # Features
//!
//! The crate implements convolutions on two numerical formats:
//!
//! - Single-precision floats (`f32`)
//! - Signed 8-bit integers with 32-bit multiply-add accumulator (this format is frequently denoted
//!   `int8/32` in deep learning literature). Quantization parameters are applied uniformly
//!   to the entire layer.
//!
//! For both cases, dilated or grouped convolutions are supported.
//!
//! # Implementation details
//!
//! The implementation uses output-stationary workflow (see, e.g., [this paper] for
//! the definition); that is, each element of the output tensor is computed in a single run
//! of the OpenCL kernel. This minimizes memory overhead, but may not be the fastest algorithm.
//!
//! [Convolution]: https://en.wikipedia.org/wiki/Convolution
//! [deep learning]: https://en.wikipedia.org/wiki/Deep_learning
//! [cnn]: https://en.wikipedia.org/wiki/Convolutional_neural_network
//! [OpenCL]: https://www.khronos.org/opencl/
//! [this paper]: https://dl.acm.org/citation.cfm?id=3001177
//! [`Convolution`]: struct.Convolution.html
//!
//! # Examples
//!
//! ## Floating-point convolution
//!
//! ```
//! use ndarray::Array4;
//! use rand::{Rng, thread_rng};
//! use ocl_convolution::{Convolution, FeatureMap, Params};
//!
//! # fn main() -> Result<(), ocl::Error> {
//! let convolution = Convolution::f32(3)?.build(Params {
//!     strides: [1, 1],
//!     pads: [0; 4],
//!     dilation: [1, 1],
//!     groups: 1,
//! })?;
//!
//! // Generate random signal with 6x6 spatial dims and 3 channels.
//! let mut rng = thread_rng();
//! let signal = Array4::from_shape_fn([1, 6, 6, 3], |_| rng.gen_range(-1.0, 1.0));
//! // Construct two 3x3 spatial filters.
//! let filters = Array4::from_shape_fn([2, 3, 3, 3], |_| rng.gen_range(-1.0, 1.0));
//! // Perform the convolution. The output should have 4x4 spatial dims
//! // and contain 2 channels (1 per each filter). The output layout will
//! // be the same as in the signal.
//! let output = convolution.compute(
//!     // `FeatureMap` wraps `ArrayView4` with information about
//!     // memory layout (which is "channels-last" / NHWC in this case).
//!     FeatureMap::nhwc(&signal),
//!     &filters,
//! )?;
//! assert_eq!(output.shape(), [1, 4, 4, 2]);
//!
//! // For increased efficiency, we may pin filter memory.
//! // This is especially useful when the same filters are convolved
//! // with multiple signals.
//! let convolution = convolution.with_filters(&filters)?;
//! let new_output = convolution.compute(FeatureMap::nhwc(&signal))?;
//! assert_eq!(output, new_output);
//! # Ok(())
//! # }
//! ```
//!
//! ## Quantized convolution
//!
//! ```
//! use ndarray::Array4;
//! use rand::{Rng, thread_rng};
//! use ocl_convolution::{Convolution, I8Params, FeatureMap, Params};
//!
//! # fn main() -> Result<(), ocl::Error> {
//! const BIT_SHIFT: u8 = 16;
//! let params = I8Params {
//!     common: Params::default(),
//!     // These params are found by profiling; here, they are
//!     // chosen randomly.
//!     bit_shift: BIT_SHIFT,
//!     scale: I8Params::convert_scale(BIT_SHIFT, 0.1),
//!     output_bias: -10,
//!     signal_bias: 20,
//!     filter_bias: -5,
//! };
//! let convolution = Convolution::i8(3)?.build(params)?;
//!
//! // Generate random signal with 6x6 spatial dims and 3 channels.
//! let mut rng = thread_rng();
//! let signal = Array4::from_shape_fn([1, 6, 6, 3], |_| rng.gen_range(-127, 127));
//! // Construct two 3x3 spatial filters.
//! let filters = Array4::from_shape_fn([2, 3, 3, 3], |_| rng.gen_range(-127, 127));
//! // Perform the convolution. The output should have 4x4 spatial dims
//! // and contain 2 channels (1 per each filter).
//! let output = convolution.compute(
//!     FeatureMap::nhwc(&signal),
//!     &filters,
//! )?;
//! assert_eq!(output.shape(), [1, 4, 4, 2]);
//! # Ok(())
//! # }
//! ```

#![deny(missing_docs, missing_debug_implementations)]

use ndarray::{Array4, ArrayView4};
use ocl::OclPrm;

mod base;
mod buffers;
mod params;

use crate::{
    base::Base,
    buffers::{Filters, Pinned},
};
pub use crate::{
    base::ConvolutionBuilder,
    buffers::{FeatureMap, FeatureMapShape, Layout},
    params::{I8Params, Params, WithParams},
};

const SOURCE: &str = include_str!(concat!(env!("OUT_DIR"), "/conv.cl"));

/// Supported element types for convolutions.
pub trait ConvElement: OclPrm + Copy + Default + WithParams + 'static {
    /// Type of the multiply-add accumulator.
    type Acc: OclPrm + Copy + Default + 'static;
}

impl ConvElement for f32 {
    type Acc = f32;
}

impl ConvElement for i8 {
    type Acc = i32;
}

impl ConvolutionBuilder<f32> {
    /// Creates a new floating-point convolution.
    pub fn build(&self, params: Params) -> ocl::Result<Convolution<f32>> {
        Base::new(self, params).map(Convolution)
    }
}

impl ConvolutionBuilder<i8> {
    /// Creates a new quantized convolution.
    pub fn build(&self, params: I8Params) -> ocl::Result<Convolution<i8>> {
        Base::new(self, params).map(Convolution)
    }
}

/// Convolution without pinned memory.
#[derive(Debug)]
pub struct Convolution<T: ConvElement>(Base<T>);

impl Convolution<f32> {
    /// Creates a new floating-point convolution builder.
    pub fn f32(size: usize) -> ocl::Result<ConvolutionBuilder<f32>> {
        ConvolutionBuilder::new(size, &[("KERNEL_TYPE", 32)], SOURCE)
    }
}

/// Quantized convolution over signed 8-bit integers.
///
/// Due to use of `i8` inputs, computations are performed much faster than on `f32` inputs
/// (the difference manifests most on the specialized hardware, but it is seen in this
/// OpenCL-powered implementation as well).
///
/// ## Connection to real-value convolution
///
/// Quantized convolution mirrors real-valued convolution in which `i8` elements
/// of the signal, filter and output tensors represent real-valued numbers with the
/// following mapping:
///
/// ```
/// let scale: f32 = // ...
/// # 1.0;
/// let bias: i32 = // ...
/// # 0; drop(
/// |x: i8| -> f32 { scale * (i32::from(x) - bias) as f32 }
/// # )
/// ```
///
/// `scale` and `bias` may differ for different tensors; these params are usually determined
/// by *profiling* the corresponding convolutional neural network (see e.g. [this paper]).
///
/// Denote these quantiation params for tensor `T` as `T.scale` and `T.bias`. Denote `S`
/// the signal, `F` the filter, `O` the output. Convolution parameters should be set as follows:
///
/// | `I8Params` field | Value     |
/// |------------------|-----------|
/// | `signal_bias`    | `-S.bias` |
/// | `filter_bias`    | `-F.bias` |
/// | `output_bias`    | `O.bias`  |
/// | `scale`          | `S.scale * F.scale / O.scale` |
///
/// `scale` is represented as a fixed-point number with [`bit_shift`] binary digits after
/// the point. Note that filter biases `B` are not transformed during the computation.
///
/// # Computing convolution
///
/// Suppose `S` is the signal and `F` is the filter tensor; both contain `i8` values.
/// The computation is performed as follows:
///
/// 1. Unbias the signal: `S := S + params.signal_bias`.
/// 2. Unbias the filters: `F := F + params.filter_bias`.
/// 3. Compute "standard" convolution output `O := S (*) F` using `i32` precision.
/// 4. Upscale each number in the output: `O := O * params.scale`.
/// 5. If there is filter bias `B` provided, apply bias to the output per each output channel:
///    `O[f, ..] := O[f, ..] + B[f]`.
/// 6. Downscale the output: `O := round(O / 2**self.bit_shift)`,
///   where `round()` works as floating-point rounding with the default mode
///   (round to nearest, ties to even).
/// 7. Apply output bias: `O := O + params.output_bias`.
/// 8. Saturate output to `i8` range.
///
/// [`bit_shift`]: struct.I8Params.html#field.bit_shift
/// [this paper]: https://arxiv.org/abs/1805.00907
impl Convolution<i8> {
    /// Creates a new `i8` convolution builder.
    pub fn i8(size: usize) -> ocl::Result<ConvolutionBuilder<i8>> {
        ConvolutionBuilder::new(size, &[("KERNEL_TYPE", 8)], SOURCE)
    }
}

impl<T: ConvElement> Convolution<T> {
    /// Spatial size of the convolution.
    pub fn size(&self) -> usize {
        self.0.size()
    }

    /// Returns general parameters of the convolution.
    pub fn params(&self) -> &T::Params {
        self.0.params()
    }

    /// Sets convolution parameters.
    pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
        self.0.set_params(params)
    }

    /// Returns the convolution with pinned filter memory.
    ///
    /// # Parameters
    ///
    /// - `filters` should have `MxK_HxK_WxC` layout, where `M` is the number of filters,
    ///   `K_H` and `K_W` are spatial dimensions of a filter, `C` is the number of input channels.
    pub fn with_filters<'a>(
        self,
        filters: impl Into<ArrayView4<'a, T>>,
    ) -> ocl::Result<FiltersConvolution<T>> {
        self.0
            .with_filters(filters.into(), None)
            .map(FiltersConvolution)
    }

    /// Returns the convolution with pinned filter / filter bias memory.
    pub fn with_biased_filters<'a>(
        self,
        filters: impl Into<ArrayView4<'a, T>>,
        filter_biases: &[T::Acc],
    ) -> ocl::Result<FiltersConvolution<T>> {
        self.0
            .with_filters(filters.into(), Some(filter_biases))
            .map(FiltersConvolution)
    }

    /// Performs convolution on the provided `signal` and `filters`.
    ///
    /// # Parameters
    ///
    /// - `filters` should have `MxK_HxK_WxC` layout, where `M` is the number of filters,
    ///   `K_H` and `K_W` are spatial dimensions of a filter, `C` is the number of input channels.
    ///
    /// # Return value
    ///
    /// The output will have the same layout as `signal`. An error means something wrong
    /// with OpenCL.
    ///
    /// # Panics
    ///
    /// - The method will panic if `filters` do not have expected spatial dimensions, i.e.,
    ///   `self.size() x self.size()`.
    /// - Likewise, the method will panic if the number of input channels differs from number of
    ///   channels in `filters`.
    pub fn compute<'a>(
        &self,
        signal: FeatureMap<T>,
        filters: impl Into<ArrayView4<'a, T>>,
    ) -> ocl::Result<Array4<T>> {
        self.0.compute(signal, filters.into(), None)
    }

    /// Performs convolution on the provided `signal` and `filters`, with the output offset
    /// by the provided per-filter biases.
    ///
    /// Parameters, return value and panics are generally the same as for
    /// [`compute()`](#method.compute).
    pub fn compute_with_biases<'a>(
        &self,
        signal: FeatureMap<T>,
        filters: impl Into<ArrayView4<'a, T>>,
        filter_biases: &[T::Acc],
    ) -> ocl::Result<Array4<T>> {
        self.0.compute(signal, filters.into(), Some(filter_biases))
    }
}

/// Convolution with pinned filters memory.
#[derive(Debug)]
pub struct FiltersConvolution<T: ConvElement>(Base<Filters<T>>);

impl<T: ConvElement> FiltersConvolution<T> {
    /// Spatial size of the convolution.
    pub fn size(&self) -> usize {
        self.0.size()
    }

    /// Returns general parameters of the convolution.
    pub fn params(&self) -> &T::Params {
        self.0.params()
    }

    /// Sets convolution parameters.
    pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
        self.0.set_params(params)
    }

    /// Pins signal and output memory for this convolution.
    pub fn pin(self, signal_shape: FeatureMapShape) -> ocl::Result<PinnedConvolution<T>> {
        self.0.pinned(signal_shape).map(PinnedConvolution)
    }

    /// Computes the convolution on the provided signal.
    pub fn compute(&self, signal: FeatureMap<T>) -> ocl::Result<Array4<T>> {
        self.0.compute(signal)
    }
}

/// Convolution with pinned memory for filters, signal and output.
#[derive(Debug)]
pub struct PinnedConvolution<T: ConvElement>(Base<Pinned<T>>);

impl<T: ConvElement> PinnedConvolution<T> {
    /// Spatial size of the convolution.
    pub fn size(&self) -> usize {
        self.0.size()
    }

    /// Returns general parameters of the convolution.
    pub fn params(&self) -> &T::Params {
        self.0.params()
    }

    /// Sets convolution parameters.
    pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
        self.0.set_params(params)
    }

    /// Computes the convolution on the provided signal. Signal dimensions must agree with
    /// the ones provided to the `pinned()` constructor.
    pub fn compute(&self, signal: FeatureMap<T>) -> ocl::Result<Array4<T>> {
        self.0.compute(signal)
    }
}

#[cfg(test)]
mod tests {
    use failure::Error;
    use ndarray::Axis;
    use rand::{thread_rng, Rng};
    use std::f32;

    use super::*;

    #[test]
    fn basics() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params::default())?;
        let signal = Array4::from_shape_vec(
            [1, 5, 5, 1],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24.,
            ],
        )?;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![1.0; 9])?;

        let c = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 3, 3, 1],
                vec![54., 63., 72., 99., 108., 117., 144., 153., 162.],
            )?,
        );

        let signal = Array4::from_shape_vec(
            [1, 1, 5, 5],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24.,
            ],
        )?;
        let c = convolution.compute(FeatureMap::nchw(&signal), &filter)?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 1, 3, 3],
                vec![54., 63., 72., 99., 108., 117., 144., 153., 162.],
            )?,
        );

        Ok(())
    }

    #[test]
    fn f32_convolution_with_filters() -> Result<(), Error> {
        let filters = Array4::from_elem([1, 3, 3, 1], 1.0);
        let convolution = Convolution::f32(3)?
            .build(Params::default())?
            .with_filters(filters.view())?;

        let signal = Array4::from_shape_vec(
            [1, 5, 5, 1],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24.,
            ],
        )?;

        let c = convolution.compute(FeatureMap::nhwc(&signal))?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 3, 3, 1],
                vec![54., 63., 72., 99., 108., 117., 144., 153., 162.],
            )?,
        );

        for i in 1..=5 {
            let signal = Array4::from_elem([1, 5 + i, 5 + i, 1], i as f32);
            assert!(convolution.compute(FeatureMap::nhwc(&signal)).is_ok());
        }

        let pinned = convolution.pin(FeatureMapShape {
            batch_size: 1,
            width: 5,
            height: 5,
            channels: 1,
        })?;
        let c = pinned.compute(FeatureMap::nhwc(&signal))?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 3, 3, 1],
                vec![54., 63., 72., 99., 108., 117., 144., 153., 162.],
            )?,
        );
        for i in 1..=5 {
            let signal = Array4::from_elem([1, 5, 5, 1], i as f32);
            assert!(pinned.compute(FeatureMap::nhwc(&signal)).is_ok());
        }
        Ok(())
    }

    #[test]
    fn f32_convolution_with_filters_and_biases() -> Result<(), Error> {
        let filters = Array4::from_elem([1, 3, 3, 1], 1.0);
        let convolution = Convolution::f32(3)?
            .build(Params::default())?
            .with_biased_filters(filters.view(), &[-100.0])?;

        let signal = Array4::from_shape_vec(
            [1, 5, 5, 1],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24.,
            ],
        )?;

        let c = convolution.compute(FeatureMap::nhwc(&signal))?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 3, 3, 1],
                vec![-46., -37., -28., -1., 8., 17., 44., 53., 62.],
            )?,
        );
        Ok(())
    }

    #[test]
    fn grouped_convolution() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params {
            strides: [1, 1],
            pads: [0; 4],
            dilation: [1, 1],
            groups: 2,
        })?;

        // All elements on the `i`th channel have value `i`.
        let signal = Array4::from_shape_vec(
            [1, 3, 3, 4],
            vec![
                1., 2., 3., 4., 1., 2., 3., 4., 1., 2., 3., 4., 1., 2., 3., 4., 1., 2., 3., 4., 1.,
                2., 3., 4., 1., 2., 3., 4., 1., 2., 3., 4., 1., 2., 3., 4.,
            ],
        )?;

        let filters = Array4::from_shape_vec(
            [2, 3, 3, 2],
            vec![
                // 1st filter (applied to channels 0..2)
                1., -1., 1., -1., 1., -1., 1., -1., 1., -1., 1., -1., 1., -1., 1., -1., 1., -1.,
                // 2nd filter (applied to channels 2..4)
                1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
            ],
        )?;
        let expected_output = Array4::from_shape_vec(
            [1, 1, 1, 2],
            vec![
                -9.0, // = (1 + 1 + ... + 1) * (1 - 2)
                63.0, // = (1 + 1 + ... + 1) * (3 + 4)
            ],
        )?;

        let output = convolution.compute(FeatureMap::nhwc(&signal), &filters)?;
        assert_eq!(output, expected_output);
        Ok(())
    }

    #[test]
    fn grouped_i8_convolution() -> Result<(), Error> {
        let convolution = Convolution::i8(3)?.build(I8Params {
            common: Params {
                strides: [1, 1],
                pads: [0; 4],
                dilation: [1, 1],
                groups: 4,
            },
            bit_shift: 12,
            scale: I8Params::convert_scale(12, 1.0),
            output_bias: 0,
            signal_bias: 0,
            filter_bias: 0,
        })?;

        // All elements on the `i`th channel have value `i`.
        let signal = Array4::from_shape_vec(
            [1, 3, 3, 4],
            vec![
                1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
                1, 2, 3, 4, 1, 2, 3, 4,
            ],
        )?;

        let filters = Array4::from_shape_vec(
            [4, 3, 3, 1],
            vec![
                1, -1, 1, -1, 1, -1, 1, -1, 1, //
                1, 1, 1, 1, 1, 1, 1, 1, 1, //
                1, -1, 1, -1, 1, -1, 1, -1, 1, //
                1, 1, 1, 1, 1, 1, 1, 1, 1, //
            ],
        )?;
        let expected_output = Array4::from_shape_vec(
            [1, 1, 1, 4],
            vec![
                1,  // 1 * (1 - 1 + 1 - ... + 1)
                18, // 2 * 9
                3,  // 3 * (1 - 1 + 1 - ... + 1)
                36, // 4 * 9
            ],
        )?;

        let output = convolution.compute(FeatureMap::nhwc(&signal), &filters)?;
        assert_eq!(output, expected_output);
        Ok(())
    }

    #[test]
    fn with_padding() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params {
            strides: [1, 1],
            pads: [1; 4],
            dilation: [1, 1],
            groups: 1,
        })?;

        let signal = Array4::from_shape_vec(
            [1, 5, 5, 1],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24.,
            ],
        )?;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![1.0; 9])?;

        let c = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        assert_eq!(
            c,
            Array4::from_shape_vec(
                [1, 5, 5, 1],
                vec![
                    12., 21., 27., 33., 24., 33., 54., 63., 72., 51., 63., 99., 108., 117., 81.,
                    93., 144., 153., 162., 111., 72., 111., 117., 123., 84.,
                ],
            )?,
        );
        Ok(())
    }

    #[test]
    fn with_strides() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params {
            strides: [2, 2],
            pads: [0; 4],
            dilation: [1, 1],
            groups: 1,
        })?;

        let signal = Array4::from_shape_vec(
            [1, 7, 5, 1],
            vec![
                0., 1., 2., 3., 4., //
                5., 6., 7., 8., 9., //
                10., 11., 12., 13., 14., //
                15., 16., 17., 18., 19., //
                20., 21., 22., 23., 24., //
                25., 26., 27., 28., 29., //
                30., 31., 32., 33., 34., //
            ],
        )?;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![1.; 9])?;
        let expected_output =
            Array4::from_shape_vec([1, 3, 2, 1], vec![54., 72., 144., 162., 234., 252.])?;

        assert_eq!(
            convolution.compute(FeatureMap::nhwc(&signal), &filter)?,
            expected_output
        );
        Ok(())
    }

    #[test]
    fn with_strides_and_padding() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params {
            strides: [2, 2],
            pads: [1; 4],
            dilation: [1, 1],
            groups: 1,
        })?;

        let signal = Array4::from_shape_vec(
            [1, 7, 5, 1],
            vec![
                0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
                18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33.,
                34.,
            ],
        )?;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![1.; 9])?;

        let expected_output = Array4::from_shape_vec(
            [1, 4, 3, 1],
            vec![
                12., 27., 24., 63., 108., 81., 123., 198., 141., 112., 177., 124.,
            ],
        )?;

        assert_eq!(
            convolution.compute(FeatureMap::nhwc(&signal), &filter)?,
            expected_output
        );
        Ok(())
    }

    #[test]
    fn with_several_input_channels() -> Result<(), Error> {
        let convolution = Convolution::f32(3)?.build(Params {
            strides: [1, 1],
            pads: [1; 4],
            dilation: [1, 1],
            groups: 1,
        })?;

        let mut signal = vec![0.0; 100];
        for (i, val) in signal.iter_mut().enumerate() {
            *val = (i / 4) as f32;
        }
        let signal = Array4::from_shape_vec([1, 5, 5, 4], signal)?;
        let filter = Array4::from_shape_vec([1, 3, 3, 4], vec![1.; 36])?;
        let output = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;

        assert!((output[[0, 0, 0, 0]] - 48.0).abs() < f32::EPSILON);
        // 48 = 4 * (0 + 1 + 5 + 6), numbers in the upper left corner of the image.
        Ok(())
    }

    #[test]
    fn with_dilation() -> Result<(), Error> {
        let mut convolution = Convolution::f32(3)?.build(Params {
            strides: [1, 1],
            pads: [0; 4],
            groups: 1,
            dilation: [2, 2],
        })?;

        let signal = Array4::from_shape_vec(
            [1, 5, 5, 1],
            vec![
                1.0, 2.0, 3.0, 4.0, 5.0, //
                6.0, 7.0, 8.0, 9.0, 10.0, //
                11.0, 12.0, 13.0, 14.0, 15.0, //
                16.0, 17.0, 18.0, 19.0, 20.0, //
                21.0, 22.0, 23.0, 24.0, 25.0, //
            ],
        )?;
        let filters = Array4::from_elem([1, 3, 3, 1], 1.0);

        // 117.0 = 1.0 + 3.0 + ... + 25.0
        let expected_output = Array4::from_elem([1, 1, 1, 1], 117.0);
        assert_eq!(
            convolution.compute(FeatureMap::nhwc(&signal), &filters)?,
            expected_output
        );

        convolution.set_params(Params {
            strides: [1, 1],
            pads: [1; 4],
            groups: 1,
            dilation: [2, 2],
        })?;

        let expected_output = Array4::from_shape_vec(
            [1, 3, 3, 1],
            vec![
                52.0, 78.0, 52.0, //
                78.0, 117.0, 78.0, //
                52.0, 78.0, 52.0, //
            ],
        )?;
        assert_eq!(
            convolution.compute(FeatureMap::nhwc(&signal), &filters)?,
            expected_output
        );
        Ok(())
    }

    #[test]
    fn rounding_in_i8_convolution() -> Result<(), Error> {
        const BIT_SHIFT: u8 = 8;
        let params = I8Params {
            common: Params::default(),
            bit_shift: BIT_SHIFT,
            scale: I8Params::convert_scale(BIT_SHIFT, 0.5),
            output_bias: 0,
            signal_bias: 0,
            filter_bias: 0,
        };
        let convolution = Convolution::i8(1)?.build(params)?;
        let signal = Array4::from_shape_vec([1, 2, 3, 1], vec![-7, -6, -5, 5, 6, 7])?;
        let filter = Array4::from_shape_vec([1, 1, 1, 1], vec![1])?;

        let output = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        let expected_output = Array4::from_shape_vec([1, 2, 3, 1], vec![-4, -3, -2, 2, 3, 4])?;
        assert_eq!(output, expected_output);
        Ok(())
    }

    #[test]
    fn i8_convolution() -> Result<(), Error> {
        const BIT_SHIFT: u8 = 8;
        let params = I8Params {
            common: Params::default(),
            bit_shift: BIT_SHIFT,
            scale: I8Params::convert_scale(BIT_SHIFT, 1.0),
            output_bias: 0,
            signal_bias: 0,
            filter_bias: 0,
        };
        let mut convolution = Convolution::i8(3)?.build(params)?;

        let signal = vec![
            0, 1, 2, 3, 4, //
            5, 6, 7, 8, 9, //
            10, 11, 12, 13, 14, //
            -5, -6, -7, -8, -9, //
            0, -1, -2, -3, -4, //
        ];
        let signal = Array4::from_shape_vec([1, 5, 5, 1], signal)?;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![1; 9])?;

        let expected_output = vec![
            54, 63, 72, //
            33, 36, 39, //
            12, 9, 6, //
        ];
        let expected_output = Array4::from_shape_vec([1, 3, 3, 1], expected_output)?;
        let output = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        assert_eq!(output, expected_output);

        // Check the same convolution with different scale / bias params.
        // We use post-conv transform |x| { x / 3 - 12 }.
        let expected_output = vec![
            6, 9, 12, //
            -1, 0, 1, //
            -8, -9, -10, //
        ];
        let expected_output = Array4::from_shape_vec([1, 3, 3, 1], expected_output)?;

        convolution.set_params(I8Params {
            common: Params::default(),
            bit_shift: BIT_SHIFT,
            scale: I8Params::convert_scale(BIT_SHIFT, 1.0 / 3.0),
            output_bias: -12,
            signal_bias: 0,
            filter_bias: 0,
        })?;
        let output = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        assert_eq!(output, expected_output);

        // Check `filter_bias` / `signal_bias`.
        let signal = vec![
            0, 1, 2, 3, 4, //
            5, 6, 7, 8, 9, //
            10, 11, 12, 13, 14, //
            -5, -6, -7, -8, -9, //
            0, -1, -2, -3, -4, //
        ];
        let signal = Array4::from_shape_vec([1, 5, 5, 1], signal)? - 7;
        let filter = Array4::from_shape_vec([1, 3, 3, 1], vec![0; 9])?;

        convolution.set_params(I8Params {
            common: Params::default(),
            output_bias: -12,
            filter_bias: 1,
            signal_bias: 7,
            bit_shift: BIT_SHIFT,
            scale: I8Params::convert_scale(BIT_SHIFT, 1.0 / 3.0),
        })?;
        let output = convolution.compute(FeatureMap::nhwc(&signal), &filter)?;
        assert_eq!(output, expected_output);
        Ok(())
    }

    #[test]
    fn i8_convolution_with_filter_bias() -> Result<(), Error> {
        const BIT_SHIFT: u8 = 8;
        const MULTIPLIER: i32 = 1 << (BIT_SHIFT as i32);

        let params = I8Params {
            common: Params::default(),
            bit_shift: BIT_SHIFT,
            scale: I8Params::convert_scale(BIT_SHIFT, 1.0 / 3.0),
            output_bias: 0,
            signal_bias: 0,
            filter_bias: 0,
        };
        let convolution = Convolution::i8(3)?.build(params)?;

        let signal = vec![
            0, 1, 2, 3, 4, //
            5, 6, 7, 8, 9, //
            10, 11, 12, 13, 14, //
            -5, -6, -7, -8, -9, //
            0, -1, -2, -3, -4, //
        ];
        let signal = Array4::from_shape_vec([1, 5, 5, 1], signal)?;
        let signal = FeatureMap::nhwc(&signal);
        let filter = Array4::from_shape_vec([2, 3, 3, 1], vec![1; 18])?;

        let expected_output = vec![
            // First filter output
            6, 9, 12, //
            -1, 0, 1, //
            -8, -9, -10, //
            // Second filter output
            17, 20, 23, //
            10, 11, 12, //
            3, 2, 1, //
        ];
        let expected_output =
            Array4::from_shape_vec([1, 2, 3, 3], expected_output)?.permuted_axes([0, 2, 3, 1]);

        let biases = &[-12 * MULTIPLIER, -MULTIPLIER];
        let output = convolution
            .compute_with_biases(signal, &filter, biases)
            .unwrap();
        assert_eq!(output, expected_output);

        // Check filter pinning.
        let convolution = convolution.with_biased_filters(&filter, biases)?;
        let output = convolution.compute(signal)?;
        assert_eq!(output, expected_output);

        let convolution = convolution.pin(FeatureMapShape {
            batch_size: 1,
            width: 5,
            height: 5,
            channels: 1,
        })?;
        let output = convolution.compute(signal)?;
        assert_eq!(output, expected_output);
        Ok(())
    }

    #[test]
    #[allow(clippy::deref_addrof)] // the problem is in the `ndarray::s!` macro
    fn f32_batching() -> Result<(), Error> {
        use ndarray::{s, stack};

        let mut rng = thread_rng();
        let conv = Convolution::f32(3)?.build(Params::default())?;
        let filters = Array4::from_shape_fn([2, 3, 3, 4], |_| rng.gen_range(-1.0, 1.0));
        let conv = conv.with_filters(&filters)?;

        for batch_size in 2..8 {
            // Test both NHWC and NCHW layouts
            let signal_shape = if batch_size % 2 == 0 {
                [batch_size, 5, 5, 4]
            } else {
                [batch_size, 4, 5, 5]
            };
            let to_map = if batch_size % 2 == 0 {
                FeatureMap::nhwc
            } else {
                FeatureMap::nchw
            };

            let signal = Array4::from_shape_fn(signal_shape, |_| rng.gen_range(-1.0, 1.0));
            let batched_output = conv.compute(to_map(signal.view()))?;

            let sample_outputs: Vec<_> = (0..batch_size)
                .map(|i| {
                    let sample_signal = signal.slice(s![i..=i, .., .., ..]);
                    conv.compute(to_map(sample_signal))
                })
                .collect::<Result<_, _>>()?;
            let sample_outputs: Vec<_> = sample_outputs.iter().map(Array4::view).collect();
            let stitched_output = stack(Axis(0), &sample_outputs)?;

            let max_diff = (batched_output.clone() - stitched_output.clone())
                .mapv(f32::abs)
                .fold(0.0, |acc, &x| if x > acc { x } else { acc });
            assert!(
                max_diff < f32::EPSILON,
                "batched={}, stitched={}",
                batched_output,
                stitched_output
            );
        }
        Ok(())
    }
}