1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
//! Provides high-level access to the modem API, as implemented on network cards and wireless
//! network cards.
use crate::error::Error;
use crate::helpers::{decode_u16_from_signal, max_usize};
use core::num::NonZeroU16;
use minicbor::{Decode, Encode};
use oc_wasm_futures::invoke::{component_method, Buffer};
use oc_wasm_helpers::Lockable;
use oc_wasm_safe::{
component::{Invoker, MethodCallError},
extref, Address,
};
/// The type name for network cards.
pub const TYPE: &str = "modem";
/// A data type that can be sent as part of a network packet.
///
/// The `'a` lifetime is the lifetime of the data, if the part contains a string or byte array.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub enum PacketPart<'a> {
/// The packet part is a null.
///
/// A null is preserved end-to-end. In OpenComputers 1.7, a null costs six bytes of space in
/// the packet. In OpenComputers 1.8+, it costs 3 bytes.
Null,
/// The packet part is a boolean.
///
/// A boolean is preserved end-to-end. In OpenComputers 1.7, a boolean costs six bytes of space
/// in the packet. In OpenComputers 1.8+, it costs 3 bytes.
Bool(bool),
/// The packet part is a 32-bit integer.
///
/// In OpenComputers 1.7, an `i32` is converted to an [`F64`](#F64) on the receiver; therefore,
/// this enumeration element can never appear in a received message. It costs six bytes of
/// space in the packet and is therefore still useful on the sending end as it is cheaper to
/// send an `i32` than an `f64` (ten bytes).
///
/// In OpenComputers 1.8+, an `i32` is preserved end-to-end. It costs four bytes if its value
/// is between −32,768 and +32,767, and six bytes otherwise.
I32(i32),
/// The packet part is a 64-bit integer.
///
/// In OpenComputers 1.7, an `i64` is not permitted.
///
/// In OpenComputers 1.8+, an `i64` is converted to an [`I32`](#I32) and costs the same as that
/// type if its value fits within that type’s range; otherwise, it is preserved end-to-end and
/// costs ten bytes of space in the packet.
I64(i64),
/// The packet part is a 32-bit floating-point number.
///
/// In OpenComputers 1.7, an `f32` is converted to an [`F64`](#F64) on the receiver; therefore,
/// this enumeration element can never appear in a received message. It also costs the same as
/// an [`F64`](#F64), ten bytes.
///
/// In OpenComputers 1.8+, an `f32` is converted to an [`F64`](#F64) on the receiver;
/// therefore, this enumeration element can never appear in a received message. It costs six
/// bytes of space in the packet and is therefore still useful on the sending end as it is
/// cheaper to send an `f32` than an `f64` (ten bytes).
F32(f32),
/// The packet part is a 64-bit floating-point number.
///
/// An `f64` costs ten bytes of space in the packet and is preserved end-to-end.
F64(f64),
/// The packet part is a text string.
///
/// An empty `str` costs three byte of space in the packet. A non-empty `str` costs two plus
/// the length of its UTF-8-encoded form bytes of space in the packet. It is preserved
/// end-to-end.
Str(&'a str),
/// The packet part is an array of bytes.
///
/// An empty byte array costs three bytes of space in the packet. A non-empty byte array costs
/// two plus its length bytes of space in the packet. It is preserved end-to-end.
Bytes(&'a [u8]),
}
impl From<()> for PacketPart<'_> {
fn from((): ()) -> Self {
Self::Null
}
}
impl From<bool> for PacketPart<'_> {
fn from(value: bool) -> Self {
Self::Bool(value)
}
}
impl From<u8> for PacketPart<'_> {
fn from(value: u8) -> Self {
Self::I32(value.into())
}
}
impl From<u16> for PacketPart<'_> {
fn from(value: u16) -> Self {
Self::I32(value.into())
}
}
impl From<u32> for PacketPart<'_> {
fn from(value: u32) -> Self {
match TryInto::<i32>::try_into(value) {
Ok(n) => Self::I32(n),
Err(_) => Self::I64(value.into()),
}
}
}
impl From<i8> for PacketPart<'_> {
fn from(value: i8) -> Self {
Self::I32(value.into())
}
}
impl From<i16> for PacketPart<'_> {
fn from(value: i16) -> Self {
Self::I32(value.into())
}
}
impl From<i32> for PacketPart<'_> {
fn from(value: i32) -> Self {
Self::I32(value)
}
}
impl From<i64> for PacketPart<'_> {
fn from(value: i64) -> Self {
Self::I64(value)
}
}
impl From<f32> for PacketPart<'_> {
fn from(value: f32) -> Self {
Self::F32(value)
}
}
impl From<f64> for PacketPart<'_> {
fn from(value: f64) -> Self {
Self::F64(value)
}
}
impl<'a> From<&'a str> for PacketPart<'a> {
fn from(value: &'a str) -> Self {
Self::Str(value)
}
}
impl<'a> From<&'a [u8]> for PacketPart<'a> {
fn from(value: &'a [u8]) -> Self {
Self::Bytes(value)
}
}
impl<'a, const N: usize> From<&'a [u8; N]> for PacketPart<'a> {
fn from(value: &'a [u8; N]) -> Self {
Self::Bytes(value)
}
}
impl<'a, const N: usize> From<&'a minicbor::bytes::ByteArray<N>> for PacketPart<'a> {
fn from(value: &'a minicbor::bytes::ByteArray<N>) -> Self {
Self::Bytes(&**value)
}
}
impl<'a> From<&'a minicbor::bytes::ByteSlice> for PacketPart<'a> {
fn from(value: &'a minicbor::bytes::ByteSlice) -> Self {
Self::Bytes(value)
}
}
impl<'a> From<&'a minicbor::bytes::ByteVec> for PacketPart<'a> {
fn from(value: &'a minicbor::bytes::ByteVec) -> Self {
Self::Bytes(value)
}
}
impl<'buffer, Context> Decode<'buffer, Context> for PacketPart<'buffer> {
fn decode(
d: &mut minicbor::decode::Decoder<'buffer>,
_: &mut Context,
) -> Result<Self, minicbor::decode::Error> {
use minicbor::data::Type;
match d.datatype()? {
Type::Bool => Ok(Self::Bool(d.bool()?)),
Type::Null => {
d.null()?;
Ok(Self::Null)
}
Type::Undefined => {
d.undefined()?;
Ok(Self::Null)
}
Type::I8 | Type::I16 | Type::I32 | Type::U8 | Type::U16 => Ok(Self::I32(d.i32()?)),
Type::U32 => {
let u = d.u32()?;
if let Ok(i) = i32::try_from(u) {
Ok(Self::I32(i))
} else {
Ok(Self::I64(u.into()))
}
}
// Java doesn’t have a u64 type, but we get u64 whenever an i64 of nonnegative value is
// received. Since Java doesn’t have a u64 type, we know that the u64 we decode must
// fit into an i64.
Type::I64 | Type::U64 => Ok(Self::I64(d.i64()?)),
Type::F16 | Type::F32 => Ok(Self::F32(d.f32()?)),
Type::F64 => Ok(Self::F64(d.f64()?)),
Type::Bytes => Ok(Self::Bytes(d.bytes()?)),
Type::String => Ok(Self::Str(d.str()?)),
t => Err(minicbor::decode::Error::type_mismatch(t)),
}
}
fn nil() -> Option<Self> {
Some(Self::Null)
}
}
impl<Context> Encode<Context> for PacketPart<'_> {
fn encode<W: minicbor::encode::Write>(
&self,
e: &mut minicbor::Encoder<W>,
c: &mut Context,
) -> Result<(), minicbor::encode::Error<W::Error>> {
match *self {
Self::Null => e.null(),
Self::Bool(v) => e.bool(v),
Self::I32(v) => e.i32(v),
Self::I64(v) => e.i64(v),
Self::F32(v) => e.f32(v),
Self::F64(v) => e.f64(v),
// SAFETY: We are sweeping things under the carpet a bit. In theory a consumer could
// create a PacketPart, then CBOR-encode it themselves, then drop the PacketPart and
// the string or byte array to which it points, then submit the CBOR via
// oc_wasm_safe::component::Invoker (which takes the already-encoded CBOR). But the
// ergonomics of making something in PacketPart itself unsafe would be really bad.
// Unfortunately we do not have the ability to say “impl Encode but only allow it to be
// used within this module”, which would solve this problem (because nobody else could
// CBOR-encode the PacketPart). So it seems most useful to just do this, even though
// it’s not *technically* completely safe—it is safe when the PacketPart is passed to
// the send or broadcast methods in this module.
Self::Str(v) => e.encode_with(unsafe { extref::String::new(v) }, c),
Self::Bytes(v) => e.encode_with(unsafe { extref::Bytes::new(v) }, c),
}?;
Ok(())
}
fn is_nil(&self) -> bool {
*self == Self::Null
}
}
/// A remote wakeup configuration.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum WakeMessage<'a> {
/// Remote wakeup is disabled.
Disabled,
/// Remote wakeup is enabled with an exact-match requirement. The computer wakes up if it
/// receives a network packet containing exactly one part, where that part is either the
/// specified string or a byte array containing that string’s UTF-8 encoding.
Exact(&'a str),
/// Remote wakeup is enabled with a fuzzy-match requirement. The computer wakes up if it
/// receives a network packet containing at least one part, where the first part is either the
/// specified string or a byte array containing that string’s UTF-8 encoding.
Fuzzy(&'a str),
}
impl<'buffer, Context> Decode<'buffer, Context> for WakeMessage<'buffer> {
fn decode(
d: &mut minicbor::Decoder<'buffer>,
context: &mut Context,
) -> Result<Self, minicbor::decode::Error> {
let inner = <(Option<&'buffer str>, bool)>::decode(d, context)?;
match inner {
(None, _) => Ok(Self::Disabled),
(Some(s), false) => Ok(Self::Exact(s)),
(Some(s), true) => Ok(Self::Fuzzy(s)),
}
}
}
impl<Context> Encode<Context> for WakeMessage<'_> {
fn encode<W: minicbor::encode::Write>(
&self,
e: &mut minicbor::Encoder<W>,
context: &mut Context,
) -> Result<(), minicbor::encode::Error<W::Error>> {
let inner: (Option<extref::String<'_>>, bool) = match self {
Self::Disabled => (None, false),
// SAFETY: We are sweeping things under the carpet a bit. In theory a consumer could
// create a WakeMessage, then CBOR-encode it themselves, then drop the WakeMessage and
// the string or byte array to which it points, then submit the CBOR via
// oc_wasm_safe::component::Invoker (which takes the already-encoded CBOR). But the
// ergonomics of making something in WakeMessage itself unsafe would be really bad.
// Unfortunately we do not have the ability to say “impl Encode but only allow it to be
// used within this module”, which would solve this problem (because nobody else could
// CBOR-encode the WakeMessage). So it seems most useful to just do this, even though
// it’s not *technically* completely safe—it is safe when the WakeMessage is passed to
// the set_wake_message method in this module.
Self::Exact(s) => (Some(unsafe { extref::String::new(s) }), false),
Self::Fuzzy(s) => (Some(unsafe { extref::String::new(s) }), true),
};
inner.encode(e, context)
}
}
/// A network card.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Modem(Address);
impl Modem {
/// Creates a wrapper around a network card.
///
/// The `address` parameter is the address of the network card. It is not checked for
/// correctness at this time because network topology could change after this function returns;
/// as such, each usage of the value may fail instead.
#[must_use = "This function is only useful for its return value"]
pub fn new(address: Address) -> Self {
Self(address)
}
/// Returns the address of the network card.
#[must_use = "This function is only useful for its return value"]
pub fn address(&self) -> &Address {
&self.0
}
}
impl<'invoker, 'buffer, B: 'buffer + Buffer> Lockable<'invoker, 'buffer, B> for Modem {
type Locked = Locked<'invoker, 'buffer, B>;
fn lock(&self, invoker: &'invoker mut Invoker, buffer: &'buffer mut B) -> Self::Locked {
Locked {
address: self.0,
invoker,
buffer,
}
}
}
/// A network card on which methods can be invoked.
///
/// This type combined a network card address, and [`Invoker`](Invoker) that can be used to make
/// method calls, and a scratch buffer used to perform CBOR encoding and decoding. A value of this
/// type can be created by calling [`Modem::lock`](Modem::lock), and it can be dropped to return
/// the borrow of the invoker and buffer to the caller so they can be reused for other purposes.
///
/// The `'invoker` lifetime is the lifetime of the invoker. The `'buffer` lifetime is the lifetime
/// of the buffer. The `B` type is the type of scratch buffer to use.
pub struct Locked<'invoker, 'buffer, B> {
/// The component address.
address: Address,
/// The invoker.
invoker: &'invoker mut Invoker,
/// The buffer.
buffer: &'buffer mut B,
}
impl<'invoker, 'buffer, B: Buffer> Locked<'invoker, 'buffer, B> {
/// Checks whether this network card is wired or wireless.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn is_wireless(&mut self) -> Result<bool, Error> {
let ret: (bool,) = component_method::<(), _, _>(
self.invoker,
self.buffer,
&self.address,
"isWireless",
None,
)
.await?;
Ok(ret.0)
}
/// Checks whether a specified port number accepts packets.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn is_open(&mut self, port: NonZeroU16) -> Result<bool, Error> {
let ret: (bool,) = component_method(
self.invoker,
self.buffer,
&self.address,
"isOpen",
Some(&(port,)),
)
.await?;
Ok(ret.0)
}
/// Starts accepting packets on a port number.
///
/// Returns `true` if the port was previously closed and is now open, or `false` if it was
/// already open.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
/// * [`TooManyOpenPorts`](Error::TooManyOpenPorts)
pub async fn open(&mut self, port: NonZeroU16) -> Result<bool, Error> {
let ret: Result<(bool,), MethodCallError<'_>> = component_method(
self.invoker,
self.buffer,
&self.address,
"open",
Some(&(port,)),
)
.await;
match ret {
Ok((ret,)) => Ok(ret),
Err(MethodCallError::Other(exception)) => {
if exception.is_type("java.io.IOException") {
const TOO_MANY_OPEN_PORTS: &str = "too many open ports";
let mut message_buffer = [0_u8; TOO_MANY_OPEN_PORTS.len()];
match exception.message(&mut message_buffer) {
Ok(TOO_MANY_OPEN_PORTS) => Err(Error::TooManyOpenPorts),
_ => Err(Error::BadComponent(oc_wasm_safe::error::Error::Unknown)),
}
} else {
Err(Error::BadComponent(oc_wasm_safe::error::Error::Unknown))
}
}
Err(e) => Err(e.into()),
}
}
/// Stops accepting packets on a port number.
///
/// Returns `true` if the port was previously open and is now closed, or `false` if it was
/// previously closed.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn close(&mut self, port: NonZeroU16) -> Result<bool, Error> {
let ret: (bool,) = component_method(
self.invoker,
self.buffer,
&self.address,
"close",
Some(&(port,)),
)
.await?;
Ok(ret.0)
}
/// Stops accepting packets on all ports.
///
/// Returns `true` if any ports were previously open and are now closed, or `false` if all
/// ports were previously closed.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn close_all(&mut self) -> Result<bool, Error> {
let ret: (bool,) =
component_method::<(), _, _>(self.invoker, self.buffer, &self.address, "close", None)
.await?;
Ok(ret.0)
}
/// Sends a unicast packet.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`DataTooLarge`](Error::DataTooLarge)
/// * [`NotEnoughEnergy`](Error::NotEnoughEnergy)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
/// * [`TooManyParts`](Error::TooManyParts)
pub async fn send(
&mut self,
destination: Address,
port: NonZeroU16,
parts: &[PacketPart<'_>],
) -> Result<(), Error> {
struct Params<'parts> {
destination: Address,
port: NonZeroU16,
parts: &'parts [PacketPart<'parts>],
}
impl<Context> Encode<Context> for Params<'_> {
fn encode<W: minicbor::encode::Write>(
&self,
e: &mut minicbor::Encoder<W>,
context: &mut Context,
) -> Result<(), minicbor::encode::Error<W::Error>> {
e.array(2 + self.parts.len() as u64)?;
self.destination.encode(e, context)?;
self.port.encode(e, context)?;
for part in self.parts {
part.encode(e, context)?;
}
Ok(())
}
}
self.do_send(
"send",
&Params {
destination,
port,
parts,
},
)
.await
}
/// Sends a broadcast packet.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`DataTooLarge`](Error::DataTooLarge)
/// * [`NotEnoughEnergy`](Error::NotEnoughEnergy)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
/// * [`TooManyParts`](Error::TooManyParts)
pub async fn broadcast(
&mut self,
port: NonZeroU16,
parts: &[PacketPart<'_>],
) -> Result<(), Error> {
struct Params<'parts> {
port: NonZeroU16,
parts: &'parts [PacketPart<'parts>],
}
impl<Context> Encode<Context> for Params<'_> {
fn encode<W: minicbor::encode::Write>(
&self,
e: &mut minicbor::Encoder<W>,
context: &mut Context,
) -> Result<(), minicbor::encode::Error<W::Error>> {
e.array(1 + self.parts.len() as u64)?;
self.port.encode(e, context)?;
for part in self.parts {
part.encode(e, context)?;
}
Ok(())
}
}
self.do_send("broadcast", &Params { port, parts }).await
}
/// Implements the `send` and `broadcast` methods.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`DataTooLarge`](Error::DataTooLarge)
/// * [`NotEnoughEnergy`](Error::NotEnoughEnergy)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
/// * [`TooManyParts`](Error::TooManyParts)
async fn do_send<P: Encode<()>>(&mut self, method: &str, params: &P) -> Result<(), Error> {
let ret: Result<(bool,), MethodCallError<'_>> = component_method(
self.invoker,
self.buffer,
&self.address,
method,
Some(params),
)
.await;
match ret {
Ok(_) => Ok(()),
Err(MethodCallError::BadParameters(exception)) => {
const PACKET_HAS_TOO_MANY_PARTS: &str = "packet has too many parts";
const PACKET_TOO_BIG_PREFIX: &str = "packet too big";
const MESSAGE_BUFFER_SIZE: usize = max_usize(
PACKET_HAS_TOO_MANY_PARTS.len(),
PACKET_TOO_BIG_PREFIX.len() + 20, /* for the “ (max NNNNN)” part */
);
let mut message_buffer = [0_u8; MESSAGE_BUFFER_SIZE];
match exception.message(&mut message_buffer) {
Ok(PACKET_HAS_TOO_MANY_PARTS) => Err(Error::TooManyParts),
Ok(m) if m.starts_with(PACKET_TOO_BIG_PREFIX) => Err(Error::DataTooLarge),
_ => Err(Error::BadComponent(oc_wasm_safe::error::Error::Unknown)),
}
}
Err(e @ MethodCallError::Other(exception)) => {
if exception.is_type("java.io.IOException") {
const NOT_ENOUGH_ENERGY: &str = "not enough energy";
let mut message_buffer = [0_u8; NOT_ENOUGH_ENERGY.len()];
match exception.message(&mut message_buffer) {
Ok(NOT_ENOUGH_ENERGY) => Err(Error::NotEnoughEnergy),
_ => Err(Error::BadComponent(oc_wasm_safe::error::Error::Unknown)),
}
} else {
Err(e.into())
}
}
Err(e) => Err(e.into()),
}
}
/// Returns the current wireless transmit strength.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent) is returned if the component is not a wireless
/// network card, including if it is an ordinary wired network card.
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn get_strength(&mut self) -> Result<f64, Error> {
let ret: (f64,) = component_method::<(), _, _>(
self.invoker,
self.buffer,
&self.address,
"getStrength",
None,
)
.await?;
Ok(ret.0)
}
/// Sets the wireless transmit strength.
///
/// Returns the new transmit strength, after clamping to the range permitted by the card.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent) is returned if the component is not a wireless
/// network card, including if it is an ordinary wired network card.
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn set_strength(&mut self, strength: f64) -> Result<f64, Error> {
let ret: (f64,) = component_method(
self.invoker,
self.buffer,
&self.address,
"setStrength",
Some(&(strength,)),
)
.await?;
Ok(ret.0)
}
/// Returns the wakeup message configuration.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn get_wake_message(self) -> Result<WakeMessage<'buffer>, Error> {
let ret = component_method::<(), _, _>(
self.invoker,
self.buffer,
&self.address,
"getWakeMessage",
None,
)
.await?;
Ok(ret)
}
/// Sets the wakeup message configuration.
///
/// The old configuration is returned.
///
/// # Errors
/// * [`BadComponent`](Error::BadComponent)
/// * [`TooManyDescriptors`](Error::TooManyDescriptors)
pub async fn set_wake_message(
self,
config: WakeMessage<'_>,
) -> Result<WakeMessage<'buffer>, Error> {
let ret = component_method(
self.invoker,
self.buffer,
&self.address,
"setWakeMessage",
Some(&config),
)
.await?;
Ok(ret)
}
}
/// The name of the signal sent when a network packet is received.
pub const MESSAGE_NAME: &str = "modem_message";
/// Information about a received network packet.
///
/// The `'buffer` lifetime is the lifetime of the buffer holding the backing data for the packet
/// parts. The `N` constant parameter is the maximum number of parts the packet can contain.
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct Message<'buffer, const N: usize> {
/// The address of the network card that received the packet.
pub receiver: Address,
/// The address of the network card that sent the packet.
///
/// It is unclear whether this is always the original sender, or whether it may change as the
/// packet is forwarded through relays. The documentation claims it will change, but the
/// JavaDocs in the source code claim it will not.
pub sender: Address,
/// The port number to which the packet is addressed.
///
/// This value is zero if the message was received on a linked card.
pub port: u16,
/// The distance the packet travelled through the air, if received by a wireless network card.
pub distance: f64,
/// The parts of the packet.
///
/// Any parts beyond the end of the packet are set to [`PacketPart::Null`](PacketPart::Null).
pub parts: [PacketPart<'buffer>; N],
}
impl<'buffer, Context, const N: usize> Decode<'buffer, Context> for Message<'buffer, N> {
fn decode(
d: &mut minicbor::Decoder<'buffer>,
context: &mut Context,
) -> Result<Self, minicbor::decode::Error> {
// If the CBOR fits in RAM, the array length must be ≤ maximum usize.
#[allow(clippy::cast_possible_truncation)]
let len = d.array()?.unwrap() as usize;
if len >= 4 {
let parts_count = len - 4;
if parts_count <= N {
let receiver = Address::decode(d, context)?;
let sender = Address::decode(d, context)?;
let port = decode_u16_from_signal(d)?;
let distance = d.f64()?;
let mut parts = [PacketPart::Null; N];
for i in &mut parts[..parts_count] {
*i = PacketPart::decode(d, context)?;
}
Ok(Self {
receiver,
sender,
port,
distance,
parts,
})
} else {
Err(minicbor::decode::Error::message("too many parts"))
}
} else {
Err(minicbor::decode::Error::message("array too short"))
}
}
}