1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//! A thread-safe object pool with automatic return and attach/detach semantics
//!
//! The goal of an object pool is to reuse expensive to allocate objects or frequently allocated objects
//!
//! Common use case is when using buffer to read IO.
//! You would create a Pool of size n, containing Vec<u8> that can be used to call something like `file.read_to_end(buff)`
//!
//! ## Warning
//!
//! Objects in the pool are not automatically reset, they are returned but NOT reset
//! You may want to call `object.reset()` or  `object.clear()`
//! or any other equivalent for the object you are using after pulling from the pool
//!
//! # Examples
//!
//! ## Creating a Pool
//!
//! The general pool creation looks like this
//! ```
//!  let pool: Pool<T> = Pool::new(capacity, || T::new());
//! ```
//! Creating a pool with 32 `Vec<u8>` with capacity of 4096
//! ```
//!  let pool: Pool<Vec<u8>> = Pool::new(32, || Vec::with_capacity(4096));
//! ```
//!
//! ## Using a Pool
//!
//! Basic usage for pulling from the pool
//! ```
//! let pool: Pool<Vec<u8>> = Pool::new(32, || Vec::with_capacity(4096));
//! let mut reusable_buff = pool.pull().unwrap(); // returns None when the pool is saturated
//! reusable_buff.clear(); //clear the buff before using
//! some_file.read_to_end(reusable_buff.deref_mut());
//! //reusable_buff is automatically returned to the pool when it goes out of scope
//! ```
//! Pull from poll and `detach()`
//! ```
//! let pool: Pool<Vec<u8>> = Pool::new(32, || Vec::with_capacity(4096));
//! let mut reusable_buff = pool.pull().unwrap(); // returns None when the pool is saturated
//! reusable_buff.clear(); //clear the buff before using
//! let s = String::from(reusable_buff.detach());
//! s.push_str("hello, world!");
//! reusable_buff.attach(s.into_bytes()); //need to reattach the buffer before reusable goes out of scope
//! //reusable_buff is automatically returned to the pool when it goes out of scope
//! ```
//!
//! ## Using Across Threads
//!
//! You simply wrap the pool in a [`std::sync::Arc`]
//! ```
//! let pool: Arc<Pool<T>> = Pool::new(cap, || T::new());
//! ```
//!
//! [`std::sync::Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html

#![feature(alloc)]
#![feature(raw_vec_internals)]
#![feature(test)]

extern crate alloc;
extern crate test;

use alloc::raw_vec::RawVec;
use std::ops::{
    Deref, DerefMut, Drop,
};
use std::ptr;
use std::sync::atomic::{
    AtomicBool, Ordering,
};

pub struct Pool<T> {
    inner: RawVec<Entry<T>>
}

impl<T> Pool<T> {
    pub fn new<F>(cap: usize, init: F) -> Pool<T>
        where F: Fn() -> T {
        let inner = RawVec::with_capacity_zeroed(cap);

        for i in 0..cap {
            unsafe {
                let raw_ptr: *mut Entry<T> = inner.ptr();
                raw_ptr.offset(i as isize).write(Entry {
                    data: init(),
                    locked: AtomicBool::new(false),
                });
            }
        }

        Pool {
            inner
        }
    }

    pub fn pull(&self) -> Option<Reusable<T>> {
        for i in 0..self.inner.cap() {
            let raw_ptr: *mut Entry<T> = unsafe { self.inner.ptr().offset(i as isize) };
            let entry = unsafe { raw_ptr.as_mut() }.unwrap();

            if !entry.locked.compare_and_swap(false, true, Ordering::AcqRel) {
                return Some(Reusable {
                    entry: raw_ptr,
                    index: i,
                    detached: false,
                });
            }
        }

        return None;
    }
}

//for testing only
impl Pool<Vec<u8>> {
    pub fn count(&self) -> u64 {
        let mut count = 0 as u64;

        for i in 0..self.inner.cap() {
            let raw_ptr: *mut Entry<Vec<u8>> = unsafe { self.inner.ptr().offset(i as isize) };
            let entry = unsafe { raw_ptr.as_mut() }.unwrap();

            count += entry.data.len() as u64;
        }

        return count;
    }
}

struct Entry<T> {
    data: T,
    locked: AtomicBool,
}

pub struct Reusable<T> {
    entry: *mut Entry<T>,
    detached: bool,
    index: usize,
}

impl<T> Reusable<T> {
    pub fn detach(&mut self) -> T {
        if self.detached {
            panic!("double detach not allowed")
        }

        self.detached = true;
        let copy_entry = unsafe { ptr::read(self.entry) };
        return copy_entry.data;
    }

    pub fn attach(&mut self, value: T) {
        self.detached = false;
        unsafe {
            ptr::write(self.entry, Entry {
                data: value,
                locked: AtomicBool::new(true),
            });
        }
    }
}

impl<T> Drop for Reusable<T> {
    fn drop(&mut self) {
        if self.detached {
            panic!("reusable dropped while detached")
        }

        let entry = unsafe { self.entry.as_mut() }.unwrap();

        let mut timeout = 0;
        while !entry.locked.compare_and_swap(true, false, Ordering::AcqRel) {
            if timeout > 1_000_000_000 {
                panic!("timed out dropping reusable {}", self.index)
            }

            timeout += 1;
        }
    }
}

impl<T> Deref for Reusable<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        return unsafe { &self.entry.as_ref().unwrap().data };
    }
}


impl<T> DerefMut for Reusable<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        return unsafe { &mut self.entry.as_mut().unwrap().data };
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;
    use test::Bencher;

    use super::*;

    #[test]
    fn round_trip() {
        let pool: Arc<Pool<Vec<u8>>> = Arc::new(Pool::new(10, || Vec::with_capacity(1)));

        for t in 0..10 {
            let tmp = pool.clone();
            std::thread::spawn(move || {
                for i in 0..1_000_000 {
                    let mut reusable = tmp.pull().unwrap();
                    if i % 2 == 0 {
                        let mut vec = reusable.detach();
                        vec.push(i as u8);
                        reusable.attach(vec);
                    } else {
                        reusable.push(i as u8);
                    }
                }
            });
        }

        //wait for everything to finish
        std::thread::sleep_ms(3000);

        assert_eq!(pool.count(), 10_000_000)
    }

    #[bench]
    fn bench_pull_128k(b: &mut Bencher) {
        let pool: Arc<Pool<Vec<u8>>> = Arc::new(Pool::new(1, || Vec::with_capacity(128_000)));

        b.iter(|| {
            pool.pull().unwrap()
        });
    }

    #[bench]
    fn bench_pull_1g(b: &mut Bencher) {
        let pool: Arc<Pool<Vec<u8>>> = Arc::new(Pool::new(1, || Vec::with_capacity(1_000_000_000)));

        b.iter(|| {
            pool.pull().unwrap()
        });
    }

    #[bench]
    fn bench_pull_detach_128k(b: &mut Bencher) {
        let pool: Arc<Pool<Vec<u8>>> = Arc::new(Pool::new(1, || Vec::with_capacity(128_000)));

        b.iter(|| {
            let mut reusable = pool.pull().unwrap();
            let item = reusable.detach();
            reusable.attach(item);
        });
    }

    #[bench]
    fn bench_pull_detach_1g(b: &mut Bencher) {
        let pool: Arc<Pool<Vec<u8>>> = Arc::new(Pool::new(1, || Vec::with_capacity(1_000_000_000)));

        b.iter(|| {
            let mut reusable = pool.pull().unwrap();
            let item = reusable.detach();
            reusable.attach(item);
        });
    }

    #[bench]
    fn bench_alloc_128k(b: &mut Bencher) {
        b.iter(|| {
            Vec::<u8>::with_capacity(128_000)
        });
    }

    #[bench]
    fn bench_alloc_1g(b: &mut Bencher) {
        b.iter(|| {
            Vec::<u8>::with_capacity(1_000_000_000)
        });
    }
}