Expand description
NyxsOwl: A comprehensive financial analysis library for Rust
NyxsOwl provides production-ready quantitative finance tools including:
- Technical indicators (40+ indicators with SIMD optimization)
- Advanced forecasting strategies (7 models with adaptive features)
- High-performance backtesting framework
- Real-time market data processing
- Institutional-grade risk management
§Quick Start
use nyxs_owl::prelude::*;
use nyxs_owl::common::time_series::sma;
use nyxs_owl::trade_math::momentum::calculate_rsi;
use polars::prelude::*;
let prices = vec![100.0, 102.0, 101.5, 103.0, 104.5];
// Simple technical analysis
let sma_values = sma(&prices, 3);
let price_series = Series::new("price".into(), &prices);
let rsi_series = calculate_rsi(&price_series, 3).unwrap();
println!("SMA: {:?}", sma_values);
println!("RSI length: {}", rsi_series.len());Modules§
- async_
parallel - Async and parallel processing capabilities for concurrent forecasting
- common
- Common types, traits, and utilities used throughout NyxsOwl
- forecasting
- Advanced forecasting models and strategies Forecasting module: Defines common traits, types, and errors for forecasting strategies. It also declares available forecasting model submodules like ARIMA.
- memory_
optimized - Memory optimization utilities and cache-conscious data structures Memory-Optimized Data Structures for High-Performance Financial Computing
- performance_
utils - High-performance SIMD-accelerated operations and utilities High-Performance SIMD-Accelerated Mathematical Operations
- prelude
- Common imports for typical NyxsOwl usage
- simple_
types - Shared types and error definitions for the simplified API
- technical_
strategies - Technical analysis strategies and implementations Technical Strategies Module: Technical analysis and trading strategy implementation
- trade_
math - Core module for technical indicator calculations and trading math Financial mathematics and technical analysis functions