1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2021 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use super::bacon_sci::interp::lagrange;
use super::bacon_sci::polynomial::Polynomial;
use super::crossbeam::thread;
use super::rayon::prelude::*;
use crate::celestia::{Cosm, Frame, Orbit, Spacecraft};
use crate::dimensions::allocator::Allocator;
use crate::dimensions::{DefaultAllocator, DimName, VectorN};
use crate::errors::NyxError;
use crate::io::formatter::StateFormatter;
use crate::md::{events::EventEvaluator, MdHdlr, OrbitStateOutput};
use crate::time::{Duration, Epoch, TimeSeries, TimeUnit};
use crate::utils::normalize;
use crate::{State, TimeTagged};
use std::collections::BTreeMap;
use std::fmt;
use std::iter::Iterator;
use std::sync::mpsc::{channel, Receiver};
use std::sync::Arc;
use std::time::Duration as StdDur;
use std::time::Instant;

const INTERP_TOLERANCE: f64 = 1e-10;

/// Stores a segment of an interpolation
#[derive(Clone)]
pub struct Segment<S: State>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    start_epoch: Epoch,
    duration: Duration,
    coefficients: Vec<Vec<f64>>,
    end_state: S,
}

/// Store a trajectory of any State.
#[derive(Clone)]
pub struct Traj<S: State>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    /// Segments are organized as a binary tree map whose index is the
    /// number of seconds since the start of this ephemeris rounded down
    pub segments: BTreeMap<i32, Segment<S>>,
    /// Timeout is used to stop listening to new state (default is 50ms, should work well in release and debug mode).
    pub timeout_ms: u64,
    start_state: S,
    max_offset: i32,
    /// Store the items per segment to convert to another frame.
    items_per_segments: usize,
}

pub struct TrajIterator<'a, S: State>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    pub time_series: TimeSeries,
    /// A shared pointer to the original trajectory.
    pub traj: &'a Traj<S>,
}

impl<S: State> Segment<S>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    /// Evaluate a specific segment at the provided Epoch, requires an initial state as a "template"
    pub fn evaluate(&self, from: S, epoch: Epoch) -> Result<S, NyxError> {
        // Compute the normalized time
        let dur_into_window = epoch - self.start_epoch;
        if dur_into_window > self.duration {
            return Err(NyxError::OutOfInterpolationWindow(format!(
                "Requested trajectory at time {} but that is past the final interpolation window by {}",
                epoch, dur_into_window
            )));
        } else if dur_into_window.in_seconds() < -1.0 {
            // We should not be in this window, but in the next one
            // We allow for a delta of one second because of the rounding of the indexing.
            return Err(NyxError::InvalidInterpolationData(format!(
                "Bug: should be in next window: {}",
                dur_into_window
            )));
        }

        let t_prime = normalize(
            dur_into_window.in_seconds(),
            0.0,
            self.duration.in_seconds(),
        );

        let mut state = from;

        // Rebuild the polynominals
        let mut state_vec = VectorN::<f64, S::PropVecSize>::zeros();
        for (cno, coeffs) in self.coefficients.iter().enumerate() {
            state_vec[cno] = Polynomial::from_slice(coeffs).evaluate(t_prime)
        }
        state.set(epoch, &state_vec)?;

        Ok(state)
    }
}

impl<S: State> Traj<S>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    /// Creates a new trajectory with the provided starting state (used as a template) and a receiving channel.
    /// The trajectories are always generated on a separate thread.
    pub fn new(state: S, rx: Receiver<S>) -> Result<Self, NyxError> {
        // Bug? With a spacecraft, we need more interpolation windows than just an orbit.
        // I've spent 12h trying to understand why, but I can't, so screw it for it.
        Self::new_bucket_as(state, if S::PropVecSize::dim() == 43 { 6 } else { 32 }, rx)
    }

    /// Creates a new trajectory but specifies the number of items per segment
    pub fn new_bucket_as(
        state: S,
        items_per_segments: usize,
        rx: Receiver<S>,
    ) -> Result<Self, NyxError> {
        thread::scope(|s| {
            // Initialize the interpolator
            let mut me = Self {
                segments: BTreeMap::new(),
                start_state: state,
                timeout_ms: 100,
                max_offset: 0,
                items_per_segments,
            };

            let mut children = vec![];
            let mut window_states: Vec<S> = Vec::with_capacity(items_per_segments);
            // Push the initial state
            window_states.push(state);

            // Note that we're using the typical map+reduce pattern
            // Start receiving states on a blocking call (map)
            while let Ok(state) = rx.recv_timeout(StdDur::from_millis(me.timeout_ms)) {
                if window_states.len() == items_per_segments {
                    let this_wdn = window_states.clone();
                    children.push(
                        s.spawn(move |_| -> Result<Segment<S>, NyxError> { interpolate(this_wdn) }),
                    );
                    // Copy the last state as the first state of the next window
                    let last_wdn_state = window_states[items_per_segments - 1];
                    window_states.clear();
                    window_states.push(last_wdn_state);
                }
                window_states.push(state);
            }
            // And interpolate the remaining states too, even if the buffer is not full!
            children.push(
                s.spawn(move |_| -> Result<Segment<S>, NyxError> { interpolate(window_states) }),
            );

            // Reduce
            for child in children {
                // collect each child thread's return-value
                let segment = child.join().unwrap()?;
                me.append_segment(segment);
            }

            Ok(me)
        })
        .unwrap()
    }

    fn append_segment(&mut self, segment: Segment<S>) {
        // Compute the number of seconds since start of trajectory
        let offset_s = ((segment.start_epoch - self.start_state.epoch())
            .in_seconds()
            .floor()) as i32;
        self.segments.insert(offset_s, segment);
        if offset_s > self.max_offset {
            self.max_offset = offset_s;
        }
    }

    /// Evaluate the trajectory at this specific epoch.
    pub fn evaluate(&self, epoch: Epoch) -> Result<S, NyxError> {
        let offset_s = ((epoch - self.start_state.epoch()).in_seconds().floor()) as i32;

        // Retrieve that segment
        match self.segments.range(..=offset_s).rev().next() {
            None => {
                // Let's see if this corresponds to the max offset value
                let last_item = self.segments[&self.max_offset].end_state;
                if last_item.epoch() == epoch {
                    Ok(last_item)
                } else {
                    Err(NyxError::NoInterpolationData(format!("{}", epoch)))
                }
            }
            Some((_, segment)) => segment.evaluate(self.start_state, epoch),
        }
    }

    /// Returns the first state in this ephemeris
    pub fn first(&self) -> S {
        self.start_state
    }

    /// Returns the last state in this ephemeris
    pub fn last(&self) -> S {
        self.segments[&self.max_offset].end_state
    }

    /// Creates an iterator through the trajectory by the provided step size
    pub fn every(&self, step: Duration) -> TrajIterator<S> {
        self.every_between(step, self.first().epoch(), self.last().epoch())
    }

    /// Creates an iterator through the trajectory by the provided step size between the provided bounds
    pub fn every_between(&self, step: Duration, start: Epoch, end: Epoch) -> TrajIterator<S> {
        TrajIterator {
            time_series: TimeSeries::inclusive(start, end, step),
            traj: &self,
        }
    }

    /// Find the exact state where the request event happens. The event function is expected to be monotone in the provided interval.
    #[allow(clippy::identity_op)]
    pub fn find_bracketed<E>(&self, start: Epoch, end: Epoch, event: &E) -> Result<S, NyxError>
    where
        E: EventEvaluator<S>,
    {
        use std::f64::EPSILON;
        let max_iter = 50;

        // Helper lambdas, for f64s only
        let has_converged =
            |x1: f64, x2: f64| (x1 - x2).abs() <= event.epoch_precision().in_seconds();
        let arrange = |a: f64, ya: f64, b: f64, yb: f64| {
            if ya.abs() > yb.abs() {
                (a, ya, b, yb)
            } else {
                (b, yb, a, ya)
            }
        };

        let xa_e = start;
        let xb_e = end;

        // Search in seconds (convert to epoch just in time)
        let mut xa = 0.0;
        let mut xb = (xb_e - xa_e).in_seconds();
        // Evaluate the event at both bounds
        let mut ya = event.eval(&self.evaluate(xa_e)?);
        let mut yb = event.eval(&self.evaluate(xb_e)?);

        // Check if we're already at the root
        if ya.abs() <= event.value_precision().abs() {
            return self.evaluate(xa_e);
        } else if yb.abs() <= event.value_precision().abs() {
            return self.evaluate(xb_e);
        }
        // The Brent solver, from the roots crate (sadly could not directly integrate it here)
        // Source: https://docs.rs/roots/0.0.5/src/roots/numerical/brent.rs.html#57-131

        let (mut xc, mut yc, mut xd) = (xa, ya, xa);
        let mut flag = true;

        for _ in 0..max_iter {
            if ya.abs() < event.value_precision().abs() {
                return self.evaluate(xa_e + xa * TimeUnit::Second);
            }
            if yb.abs() < event.value_precision().abs() {
                return self.evaluate(xa_e + xb * TimeUnit::Second);
            }
            if has_converged(xa, xb) {
                // The event isn't in the bracket
                return Err(NyxError::EventNotInEpochBraket(
                    start.to_string(),
                    end.to_string(),
                ));
            }
            let mut s = if (ya - yc).abs() > EPSILON && (yb - yc).abs() > EPSILON {
                xa * yb * yc / ((ya - yb) * (ya - yc))
                    + xb * ya * yc / ((yb - ya) * (yb - yc))
                    + xc * ya * yb / ((yc - ya) * (yc - yb))
            } else {
                xb - yb * (xb - xa) / (yb - ya)
            };
            let cond1 = (s - xb) * (s - (3.0 * xa + xb) / 4.0) > 0.0;
            let cond2 = flag && (s - xb).abs() >= (xb - xc).abs() / 2.0;
            let cond3 = !flag && (s - xb).abs() >= (xc - xd).abs() / 2.0;
            let cond4 = flag && has_converged(xb, xc);
            let cond5 = !flag && has_converged(xc, xd);
            if cond1 || cond2 || cond3 || cond4 || cond5 {
                s = (xa + xb) / 2.0;
                flag = true;
            } else {
                flag = false;
            }
            let next_try = self.evaluate(xa_e + s * TimeUnit::Second)?;
            let ys = event.eval(&next_try);
            xd = xc;
            xc = xb;
            yc = yb;
            if ya * ys < 0.0 {
                // Root bracketed between a and s
                let next_try = self.evaluate(xa_e + xa * TimeUnit::Second)?;
                let ya_p = event.eval(&next_try);
                let (_a, _ya, _b, _yb) = arrange(xa, ya_p, s, ys);
                {
                    xa = _a;
                    ya = _ya;
                    xb = _b;
                    yb = _yb;
                }
            } else {
                // Root bracketed between s and b
                let next_try = self.evaluate(xa_e + xb * TimeUnit::Second)?;
                let yb_p = event.eval(&next_try);
                let (_a, _ya, _b, _yb) = arrange(s, ys, xb, yb_p);
                {
                    xa = _a;
                    ya = _ya;
                    xb = _b;
                    yb = _yb;
                }
            }
        }
        Err(NyxError::MaxIterReached(format!(
            "Brent solver failed after {} iterations",
            max_iter
        )))
    }

    /// Find (usually) all of the states where the event happens.
    /// WARNING: The initial search step is 1% of the duration of the trajectory duration!
    /// For example, if the trajectory is 100 days long, then we split the trajectory into 100 chunks of 1 day and see whether
    /// the event is in there. If the event happens twice or more times within 1% of the trajectory duration, only the _one_ of
    /// such events will be found.
    #[allow(clippy::identity_op)]
    pub fn find_all<E>(&self, event: &E) -> Result<Vec<S>, NyxError>
    where
        E: EventEvaluator<S>,
    {
        let start_epoch = self.first().epoch();
        let end_epoch = self.last().epoch();
        let heuristic = (end_epoch - start_epoch) / 100;
        info!(
            "Searching for {} with initial heuristic of {}",
            event, heuristic
        );

        let (sender, receiver) = channel();

        let epochs: Vec<Epoch> = TimeSeries::inclusive(start_epoch, end_epoch, heuristic).collect();
        epochs.into_par_iter().for_each_with(sender, |s, epoch| {
            if let Ok(event_state) = self.find_bracketed(epoch, epoch + heuristic, event) {
                s.send(event_state).unwrap()
            };
        });

        let mut states: Vec<_> = receiver.iter().collect();

        if states.is_empty() {
            // Crap, we didn't find the event.
            // Let's find the min and max of this event throughout the trajectory, and search around there.
            match self.find_minmax(event, TimeUnit::Second) {
                Ok((min_event, max_event)) => {
                    let lower_min_epoch =
                        if min_event.epoch() - 1 * TimeUnit::Millisecond < self.first().epoch() {
                            self.first().epoch()
                        } else {
                            min_event.epoch() - 1 * TimeUnit::Millisecond
                        };

                    let lower_max_epoch =
                        if min_event.epoch() + 1 * TimeUnit::Millisecond > self.last().epoch() {
                            self.last().epoch()
                        } else {
                            min_event.epoch() + 1 * TimeUnit::Millisecond
                        };

                    let upper_min_epoch =
                        if max_event.epoch() - 1 * TimeUnit::Millisecond < self.first().epoch() {
                            self.first().epoch()
                        } else {
                            max_event.epoch() - 1 * TimeUnit::Millisecond
                        };

                    let upper_max_epoch =
                        if max_event.epoch() + 1 * TimeUnit::Millisecond > self.last().epoch() {
                            self.last().epoch()
                        } else {
                            max_event.epoch() + 1 * TimeUnit::Millisecond
                        };

                    // Search around the min event
                    if let Ok(event_state) =
                        self.find_bracketed(lower_min_epoch, lower_max_epoch, event)
                    {
                        states.push(event_state);
                    };

                    // Search around the max event
                    if let Ok(event_state) =
                        self.find_bracketed(upper_min_epoch, upper_max_epoch, event)
                    {
                        states.push(event_state);
                    };

                    // If there still isn't any match, report that the event was not found
                    if states.is_empty() {
                        return Err(NyxError::EventNotInEpochBraket(
                            start_epoch.to_string(),
                            end_epoch.to_string(),
                        ));
                    }
                }
                Err(_) => {
                    return Err(NyxError::EventNotInEpochBraket(
                        start_epoch.to_string(),
                        end_epoch.to_string(),
                    ))
                }
            };
        }
        // Remove duplicates and reorder
        states.sort_by(|s1, s2| s1.epoch().partial_cmp(&s2.epoch()).unwrap());
        states.dedup();
        for (cnt, event_state) in states.iter().enumerate() {
            info!("{} #{}: {}", event, cnt + 1, event_state);
        }
        Ok(states)
    }

    /// Find the minimum and maximum of the provided event through the trajectory
    #[allow(clippy::identity_op)]
    pub fn find_minmax<E>(&self, event: &E, precision: TimeUnit) -> Result<(S, S), NyxError>
    where
        E: EventEvaluator<S>,
    {
        let step: Duration = 1 * precision;
        let mut min_val = std::f64::INFINITY;
        let mut max_val = std::f64::NEG_INFINITY;
        let mut min_state = S::zeros();
        let mut max_state = S::zeros();

        let (sender, receiver) = channel();

        let epochs: Vec<Epoch> =
            TimeSeries::inclusive(self.first().epoch(), self.last().epoch(), step).collect();

        epochs.into_par_iter().for_each_with(sender, |s, epoch| {
            let state = self.evaluate(epoch).unwrap();
            let this_eval = event.eval(&state);
            s.send((this_eval, state)).unwrap();
        });

        let evald_states: Vec<_> = receiver.iter().collect();
        for (this_eval, state) in evald_states {
            if this_eval < min_val {
                min_val = this_eval;
                min_state = state;
            }
            if this_eval > max_val {
                max_val = this_eval;
                max_state = state;
            }
        }

        Ok((min_state, max_state))
    }
}

impl Traj<Orbit> {
    /// Allows converting the source trajectory into the (almost) equivalent trajectory in another frame
    /// This is super slow.
    pub fn to_frame(&self, new_frame: Frame, cosm: Arc<Cosm>) -> Result<Self, NyxError> {
        thread::scope(|s| {
            let start_time = Instant::now();
            let (tx, rx) = channel();

            let start_state = cosm.frame_chg(&self.first(), new_frame);
            // The trajectory must always be generated on its own thread.
            let traj_thread = s.spawn(move |_| Self::new(start_state, rx));
            // And start sampling, converting, and flushing into the new trajectory.

            // Nyquist–Shannon sampling theorem
            let sample_rate =
                1.0 / (((self.items_per_segments * 2 + 1) * self.segments.len()) as f64);
            let step = sample_rate * (self.last().epoch() - self.first().epoch());

            for state in self.every(step) {
                let converted_state = cosm.frame_chg(&state, new_frame);
                tx.send(converted_state).unwrap();
            }

            let traj = traj_thread.join().unwrap_or_else(|_| {
                Err(NyxError::NoInterpolationData(
                    "Could not generate trajectory".to_string(),
                ))
            })?;

            info!(
                "Converted trajectory from {} to {} in {} ms",
                self.first().frame,
                new_frame,
                (Instant::now() - start_time).as_millis()
            );

            Ok(traj)
        })
        .unwrap()
    }

    /// Exports this trajectory to the provided filename in CSV format with the default headers and the provided step
    pub fn to_csv_with_step(
        &self,
        filename: &str,
        step: Duration,
        cosm: Arc<Cosm>,
    ) -> Result<(), NyxError> {
        let fmtr = StateFormatter::default(filename.to_string(), cosm);
        let mut out = OrbitStateOutput::new(fmtr)?;
        for state in self.every(step) {
            out.handle(&state);
        }
        Ok(())
    }

    /// Exports this trajectory to the provided filename in CSV format with the default headers and the provided step
    pub fn to_csv_between_with_step(
        &self,
        filename: &str,
        start: Option<Epoch>,
        end: Option<Epoch>,
        step: Duration,
        cosm: Arc<Cosm>,
    ) -> Result<(), NyxError> {
        let fmtr = StateFormatter::default(filename.to_string(), cosm);
        let mut out = OrbitStateOutput::new(fmtr)?;
        let start = match start {
            Some(s) => s,
            None => self.first().epoch(),
        };
        let end = match end {
            Some(e) => e,
            None => self.last().epoch(),
        };
        for state in self.every_between(step, start, end) {
            out.handle(&state);
        }
        Ok(())
    }

    /// Exports this trajectory to the provided filename in CSV format with the default headers, one state per minute
    #[allow(clippy::identity_op)]
    pub fn to_csv(&self, filename: &str, cosm: Arc<Cosm>) -> Result<(), NyxError> {
        self.to_csv_with_step(filename, 1 * TimeUnit::Minute, cosm)
    }

    /// Exports this trajectory to the provided filename in CSV format with the default headers, one state per minute
    #[allow(clippy::identity_op)]
    pub fn to_csv_between(
        &self,
        filename: &str,
        start: Option<Epoch>,
        end: Option<Epoch>,
        cosm: Arc<Cosm>,
    ) -> Result<(), NyxError> {
        self.to_csv_between_with_step(filename, start, end, 1 * TimeUnit::Minute, cosm)
    }

    /// Exports this trajectory to the provided filename in CSV format with only the epoch, the geodetic latitude, longitude, and height at one state per minute.
    /// Must provide a body fixed frame to correctly compute the latitude and longitude.
    #[allow(clippy::identity_op)]
    pub fn to_groundtrack_csv(
        &self,
        filename: &str,
        body_fixed_frame: Frame,
        cosm: Arc<Cosm>,
    ) -> Result<(), NyxError> {
        let fmtr = StateFormatter::from_headers(
            vec![
                "epoch",
                "geodetic_latitude",
                "geodetic_longitude",
                "geodetic_height",
            ],
            filename.to_string(),
            cosm.clone(),
        )?;
        let mut out = OrbitStateOutput::new(fmtr)?;
        for state in self
            .to_frame(body_fixed_frame, cosm)?
            .every(1 * TimeUnit::Minute)
        {
            out.handle(&state);
        }
        Ok(())
    }

    /// Exports this trajectory to the provided filename in CSV format with the provided headers and the provided step
    pub fn to_csv_custom(
        &self,
        filename: &str,
        headers: Vec<&str>,
        step: Duration,
        cosm: Arc<Cosm>,
    ) -> Result<(), NyxError> {
        let fmtr = StateFormatter::from_headers(headers, filename.to_string(), cosm)?;
        let mut out = OrbitStateOutput::new(fmtr)?;
        for state in self.every(step) {
            out.handle(&state);
        }
        Ok(())
    }
}

impl Traj<Spacecraft> {
    /// Allows converting the source trajectory into the (almost) equivalent trajectory in another frame
    /// This is super slow.
    pub fn to_frame(&self, new_frame: Frame, cosm: Arc<Cosm>) -> Result<Self, NyxError> {
        thread::scope(|s| {
            let (tx, rx) = channel();

            let mut start_state = self.first();
            let start_orbit = cosm.frame_chg(&start_state.orbit, new_frame);
            // Update the orbit component and the frame
            start_state.orbit.x = start_orbit.x;
            start_state.orbit.y = start_orbit.y;
            start_state.orbit.z = start_orbit.z;
            start_state.orbit.vx = start_orbit.vx;
            start_state.orbit.vy = start_orbit.vy;
            start_state.orbit.vz = start_orbit.vz;
            start_state.orbit.frame = start_orbit.frame;

            // The trajectory must always be generated on its own thread.
            let traj_thread = s.spawn(move |_| Self::new(start_state, rx));
            // And start sampling, converting, and flushing into the new trajectory.

            // Nyquist–Shannon sampling theorem
            let sample_rate = 1.0 / (((16 * 2 + 1) * self.segments.len()) as f64);
            let step = sample_rate * (self.last().epoch() - self.first().epoch());

            for state in self.every(step) {
                let converted_orbit = cosm.frame_chg(&state.orbit, new_frame);
                let mut converted_state = state;
                // Update the orbit component and the frame
                converted_state.orbit.x = converted_orbit.x;
                converted_state.orbit.y = converted_orbit.y;
                converted_state.orbit.z = converted_orbit.z;
                converted_state.orbit.vx = converted_orbit.vx;
                converted_state.orbit.vy = converted_orbit.vy;
                converted_state.orbit.vz = converted_orbit.vz;
                converted_state.orbit.frame = converted_orbit.frame;

                tx.send(converted_state).unwrap();
            }

            let traj = traj_thread.join().unwrap_or_else(|_| {
                Err(NyxError::NoInterpolationData(
                    "Could not generate trajectory".to_string(),
                ))
            })?;

            Ok(traj)
        })
        .unwrap()
    }
}

impl<S: State> Iterator for TrajIterator<'_, S>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    type Item = S;

    fn next(&mut self) -> Option<Self::Item> {
        match self.time_series.next() {
            Some(next_epoch) => match self.traj.evaluate(next_epoch) {
                Ok(item) => Some(item),
                _ => None,
            },
            None => None,
        }
    }
}

impl<S: State> fmt::Display for Traj<S>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let dur = self.last().epoch() - self.first().epoch();
        write!(
            f,
            "Trajectory from {} to {} ({}, or {:.3} s)",
            self.first().epoch(),
            self.last().epoch(),
            dur,
            dur.in_seconds()
        )
    }
}

fn interpolate<S: State>(this_wdn: Vec<S>) -> Result<Segment<S>, NyxError>
where
    DefaultAllocator: Allocator<f64, S::PropVecSize> + Allocator<f64, S::Size>,
{
    // Generate interpolation and flush.
    let start_win_epoch = this_wdn[0].epoch();
    let end_win_epoch = this_wdn[this_wdn.len() - 1].epoch();
    let window_duration = end_win_epoch - start_win_epoch;
    let mut ts = Vec::new();
    let mut values = Vec::with_capacity(S::PropVecSize::dim());
    let mut coefficients = Vec::new();
    // Initialize the vector of values and coefficients.
    for _ in 0..S::PropVecSize::dim() {
        values.push(Vec::with_capacity(this_wdn.len()));
        coefficients.push(Vec::with_capacity(this_wdn.len()));
    }
    for state in &this_wdn {
        let t_prime = normalize(
            (state.epoch() - start_win_epoch).in_seconds(),
            0.0,
            window_duration.in_seconds(),
        );
        ts.push(t_prime);
        for (pos, val) in state.as_vector().as_ref().unwrap().iter().enumerate() {
            values[pos].push(*val);
        }
    }

    // Generate the polynomials
    for (pos, these_values) in values.iter().enumerate() {
        match lagrange(&ts, these_values, INTERP_TOLERANCE) {
            Ok(polyn) => coefficients[pos] = polyn.get_coefficients(),
            Err(e) => {
                return Err(NyxError::InvalidInterpolationData(format!(
                    "Interpolation failed: {}",
                    e
                )))
            }
        };
    }

    Ok(Segment {
        start_epoch: start_win_epoch,
        duration: window_duration,
        coefficients,
        end_state: this_wdn[this_wdn.len() - 1],
    })
}