1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
extern crate nalgebra as na;
use self::na::{Matrix3, Vector3};
use std::f64;

/// Returns the tilde matrix from the provided Vector3.
pub fn tilde_matrix(v: &Vector3<f64>) -> Matrix3<f64> {
    Matrix3::new(
        0.0,
        -v[(2, 0)],
        v[(1, 0)],
        v[(2, 0)],
        0.0,
        -v[(0, 0)],
        -v[(1, 0)],
        v[(0, 0)],
        0.0,
    )
}

/// Returns whether the provided square matrix (3x3) is diagonal
pub fn is_diagonal(m: &Matrix3<f64>) -> bool {
    for i in 1..2 {
        for j in 0..i {
            if (i == j && (m[(i, j)] - m[(0, 0)]) > f64::EPSILON)
                || (i != j && (m[(i, j)].abs() > f64::EPSILON || (m[(i, j)] - m[(j, i)]).abs() > f64::EPSILON))
            {
                return false;
            }
        }
    }
    true
}

/// Returns the provided angle bounded between 0.0 and 360.0
pub fn between_0_360(angle: f64) -> f64 {
    let mut bounded = angle;
    while bounded > 360.0 {
        bounded -= 360.0;
    }
    while bounded < 0.0 {
        bounded += 360.0;
    }
    bounded
}

/// Returns the provided angle bounded between -180.0 and +180.0
pub fn between_pm_180(angle: f64) -> f64 {
    let mut bounded = angle;
    while bounded > 180.0 {
        bounded -= 360.0;
    }
    while bounded < -180.0 {
        bounded += 360.0;
    }
    bounded
}

pub fn factorial(num: f64) -> f64 {
    if num <= f64::EPSILON || (num - 1.0).abs() <= f64::EPSILON {
        1.0
    } else {
        num * factorial(num - 1.0)
    }
}

pub fn kronecker(a: f64, b: f64) -> f64 {
    if (a - b).abs() <= f64::EPSILON {
        1.0
    } else {
        0.0
    }
}

/// Returns a rotation about the X axis. The angle must be provided in radians.
pub fn r1(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(1.0, 0.0, 0.0, 0.0, c, s, 0.0, -s, c)
}

/// Returns a rotation about the Y axis. The angle must be provided in radians.
pub fn r2(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(c, 0.0, -s, 0.0, 1.0, 0.0, s, 0.0, c)
}

/// Returns a rotation about the Z axis. The angle must be provided in radians.
pub fn r3(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(c, s, 0.0, -s, c, 0.0, 0.0, 0.0, 1.0)
}