1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
//! # nyx-space //! //! [Nyx](https://en.wikipedia.org/wiki/Nyx) is a high fidelity, fast, reliable and validated astrodynamical toolkit library written in Rust. //! It will _eventually_ provide most functionality in Python for rapid prototyping. //! //! The target audience is researchers and astrodynamics engineers. The rationale for using Rust is to allow for very fast computations, guaranteed thread safety, //! and portability to all platforms supported by [Rust](https://forge.rust-lang.org/platform-support.html). //! //! To some extend, the ultimate goal of this library is to retire [SPICE Toolkit](https://naif.jpl.nasa.gov/naif/toolkit.html). //! //! NOTE: It is recommended to compile all code in `nyx` with the `--release` flag. A lot of heavy //! computation is done in this library, and no one likes waiting for production code to run. //! ## Features //! //! * Propagators / Integrators of equations of motions (cf. the `propagators` module) //! * Two Body dynamics with planets defined as in GMAT / STK. //! * Angular momentum dynamics for a rigid body //! * Convenient and explicit definition of the dynamics for a simulation (cf. the [dynamics documentation](./dynamics/index.html)) //! * Orbital state definition with transformations to other frames //! //! ## Usage //! //! Put this in your `Cargo.toml`: //! //! ```toml //! [dependencies] //! nyx-space = "0.0.8" //! ``` //! //! And add the following to your crate root: //! //! ```rust //! extern crate nyx_space as nyx; //! ``` /// Provides all the propagators / integrators available in `nyx`. /// /// # Custom derivative function example /// ``` /// extern crate nalgebra as na; /// extern crate nyx_space as nyx; /// use self::na::Vector6; /// use nyx::celestia::Cosm; /// use nyx::dynamics::celestial::TwoBody; /// use nyx::dynamics::Dynamics; /// use nyx::propagators::error_ctrl::RSSStepPV; /// use nyx::propagators::*; /// /// fn main() { /// let cosm = Cosm::from_xb("./de438s"); /// let earth_geoid = cosm.geoid_from_id(3).unwrap(); /// /// let prop_time = 24.0 * 3_600.0; /// let accuracy = 1e-12; /// let min_step = 0.1; /// let max_step = 60.0; /// /// let init = Vector6::new(-2436.45, -2436.45, 6891.037, 5.088611, -5.088611, 0.0); /// /// let rslt = Vector6::from_row_slice(&[ /// -5_971.194_376_784_884, /// 3_945.517_912_191_541, /// 2_864.620_958_267_658_4, /// 0.049_083_102_073_914_83, /// -4.185_084_126_130_087_5, /// 5.848_947_462_252_259_5, /// ]); /// /// let mut dyn = TwoBody::from_state_vec(init, earth_geoid); /// let mut prop = Propagator::new::<RK89>( /// &mut dyn, /// &PropOpts::with_adaptive_step(min_step, max_step, accuracy, RSSStepPV {}), /// ); /// prop.until_time_elapsed(prop_time); /// assert_eq!(prop.state(), rslt, "two body prop failed"); /// } /// ``` pub mod propagators; /// Provides several dynamics used for orbital mechanics and attitude dynamics, which can be elegantly combined. /// /// # Simple two body propagation /// ``` /// extern crate nalgebra as na; /// extern crate hifitime; /// extern crate nyx_space as nyx; /// use hifitime::julian::ModifiedJulian; /// use hifitime::SECONDS_PER_DAY; /// use nyx::celestia::{Cosm, Geoid, State}; /// use nyx::dynamics::celestial::TwoBody; /// use nyx::dynamics::Dynamics; /// use nyx::propagators::error_ctrl::RSSStepPV; /// use nyx::propagators::{PropOpts, Propagator, RK89}; /// /// fn main() { /// let cosm = Cosm::from_xb("./de438s"); /// let earth_geoid = cosm.geoid_from_id(3).unwrap(); /// /// let dt = ModifiedJulian { days: 21545.0 }; /// let initial_state = State::<Geoid>::from_cartesian(-2436.45, -2436.45, 6891.037, 5.088611, -5.088611, 0.0, dt, earth_geoid); /// /// println!("Initial state:\n{0}\n{0:o}\n", initial_state); /// /// let prop_time = 24.0 * 3_600.0; /// let accuracy = 1e-12; /// let min_step = 0.1; /// let max_step = 60.0; /// /// let rslt = State::<Geoid>::from_cartesian( /// -5_971.194_376_784_884, /// 3_945.517_912_191_541, /// 2_864.620_958_267_658_4, /// 0.049_083_102_073_914_83, /// -4.185_084_126_130_087_5, /// 5.848_947_462_252_259_5, /// ModifiedJulian { days: 21546.0 }, /// earth_geoid, /// ); /// /// let mut dyn = TwoBody::from_state_vec(initial_state.to_cartesian_vec(), earth_geoid); /// let mut prop = Propagator::new::<RK89>( /// &mut dyn, /// &PropOpts::with_adaptive_step(min_step, max_step, accuracy, RSSStepPV {}), /// ); /// let (final_t, final_state0) = prop.until_time_elapsed(prop_time); /// /// let final_dt = ModifiedJulian { /// days: dt.days + final_t / SECONDS_PER_DAY, /// }; /// let final_state = State::from_cartesian_vec(&prop.state(), final_dt, earth_geoid); /// assert_eq!(final_state, rslt, "two body prop failed"); /// assert_eq!(prop.state(), final_state0, "until_time_elapsed returns the wrong value"); /// /// println!("Final state:\n{0}\n{0:o}", final_state); /// } /// ``` pub mod dynamics; /// Provides the solar system planets, and state and (later) ephemeride management. /// /// # State creation and management /// ``` /// extern crate hifitime; /// extern crate nyx_space as nyx; /// /// fn main(){ /// use hifitime::julian::ModifiedJulian; /// use nyx::celestia::{Cosm, Geoid, State}; /// let cosm = Cosm::from_xb("./de438s"); /// // In this case, we're creating these states around a Geoid which is Earth. /// // But for simplicity, we're actually going to use the GMAT value for Earth GM (de438s has a slightly different value). /// let mut earth_geoid = cosm.geoid_from_id(399).unwrap(); /// earth_geoid.gm = 398_600.441_5; /// let dt = ModifiedJulian { days: 21545.0 }; /// let cart = State::<Geoid>::from_cartesian( /// 5_946.673_548_288_958, /// 1_656.154_606_023_661, /// 2_259.012_129_598_249, /// -3.098_683_050_943_824, /// 4.579_534_132_135_011, /// 6.246_541_551_539_432, /// dt, /// earth_geoid, /// ); /// /// let kep = State::<Geoid>::from_keplerian( /// 7_712.186_117_895_041, /// 0.158_999_999_999_999_95, /// 53.75369, /// 1.998_632_864_211_17e-5, /// 359.787_880_000_004, /// 25.434_003_407_751_188, /// dt, /// earth_geoid /// ); /// // We can check whether two states are equal. /// if cart != kep { /// dbg!("{:?}", cart-kep); /// panic!("This won't happen"); /// } /// // Of more interest, we can fetch specific orbital elements. /// println!("sma = {} km inc = {} degrees", cart.sma(), cart.inc()); /// // Note that the state data is stored as X, Y, Z, VX, VY, VZ. /// // Hence, the following print statement may display some rounded values despite /// // being created with fixed values. GMAT has the same "issue" /// // (but `nyx` won't change your script). /// println!("ecc = {} km RAAN = {} degrees", kep.ecc(), cart.raan()); /// } /// ``` pub mod celestia; /// Include utility functions shared by different modules, and which may be useful to engineers. pub mod utils; /// Provides all the input/output needs for this library, including loading of SPICE kernels, and gravity potential files. pub mod io; /// Provides all the orbital determination tools. pub mod od; #[macro_use] extern crate log; #[macro_use] extern crate prost_derive; extern crate hifitime;