1use std::marker::PhantomData;
2
3use nuts_derive::Storable;
4use rand::Rng;
5use serde::Serialize;
6
7use super::diagonal::{DiagMassMatrix, DrawGradCollector, MassMatrix, RunningVariance};
8use crate::{
9 Math, NutsError,
10 euclidean_hamiltonian::EuclideanPoint,
11 hamiltonian::Point,
12 nuts::{Collector, NutsOptions},
13 sampler_stats::SamplerStats,
14};
15const LOWER_LIMIT: f64 = 1e-20f64;
16const UPPER_LIMIT: f64 = 1e20f64;
17
18const INIT_LOWER_LIMIT: f64 = 1e-20f64;
19const INIT_UPPER_LIMIT: f64 = 1e20f64;
20
21#[derive(Clone, Copy, Debug, Serialize)]
23pub struct DiagAdaptExpSettings {
24 pub store_mass_matrix: bool,
25 pub use_grad_based_estimate: bool,
26}
27
28impl Default for DiagAdaptExpSettings {
29 fn default() -> Self {
30 Self {
31 store_mass_matrix: false,
32 use_grad_based_estimate: true,
33 }
34 }
35}
36
37pub struct Strategy<M: Math> {
38 exp_variance_draw: RunningVariance<M>,
39 exp_variance_grad: RunningVariance<M>,
40 exp_variance_grad_bg: RunningVariance<M>,
41 exp_variance_draw_bg: RunningVariance<M>,
42 _settings: DiagAdaptExpSettings,
43 _phantom: PhantomData<M>,
44}
45
46#[derive(Debug, Storable)]
47pub struct Stats {}
48
49impl<M: Math> SamplerStats<M> for Strategy<M> {
50 type Stats = Stats;
51 type StatsOptions = ();
52
53 fn extract_stats(&self, _math: &mut M, _opt: Self::StatsOptions) -> Self::Stats {
54 Stats {}
55 }
56}
57
58pub trait MassMatrixAdaptStrategy<M: Math>: SamplerStats<M> {
59 type MassMatrix: MassMatrix<M>;
60 type Collector: Collector<M, EuclideanPoint<M>>;
61 type Options: std::fmt::Debug + Default + Clone + Send + Sync + Copy;
62
63 fn update_estimators(&mut self, math: &mut M, collector: &Self::Collector);
64
65 fn switch(&mut self, math: &mut M);
66
67 fn current_count(&self) -> u64;
68
69 fn background_count(&self) -> u64;
70
71 fn adapt(&self, math: &mut M, mass_matrix: &mut Self::MassMatrix) -> bool;
73
74 fn new(math: &mut M, options: Self::Options, _num_tune: u64, _chain: u64) -> Self;
75
76 fn init<R: Rng + ?Sized>(
77 &mut self,
78 math: &mut M,
79 _options: &mut NutsOptions,
80 mass_matrix: &mut Self::MassMatrix,
81 point: &impl Point<M>,
82 _rng: &mut R,
83 ) -> Result<(), NutsError>;
84
85 fn new_collector(&self, math: &mut M) -> Self::Collector;
86}
87
88impl<M: Math> MassMatrixAdaptStrategy<M> for Strategy<M> {
89 type MassMatrix = DiagMassMatrix<M>;
90 type Collector = DrawGradCollector<M>;
91 type Options = DiagAdaptExpSettings;
92
93 fn update_estimators(&mut self, math: &mut M, collector: &DrawGradCollector<M>) {
94 if collector.is_good {
95 self.exp_variance_draw.add_sample(math, &collector.draw);
96 self.exp_variance_grad.add_sample(math, &collector.grad);
97 self.exp_variance_draw_bg.add_sample(math, &collector.draw);
98 self.exp_variance_grad_bg.add_sample(math, &collector.grad);
99 }
100 }
101
102 fn switch(&mut self, math: &mut M) {
103 self.exp_variance_draw =
104 std::mem::replace(&mut self.exp_variance_draw_bg, RunningVariance::new(math));
105 self.exp_variance_grad =
106 std::mem::replace(&mut self.exp_variance_grad_bg, RunningVariance::new(math));
107 }
108
109 fn current_count(&self) -> u64 {
110 assert!(self.exp_variance_draw.count() == self.exp_variance_grad.count());
111 self.exp_variance_draw.count()
112 }
113
114 fn background_count(&self) -> u64 {
115 assert!(self.exp_variance_draw_bg.count() == self.exp_variance_grad_bg.count());
116 self.exp_variance_draw_bg.count()
117 }
118
119 fn adapt(&self, math: &mut M, mass_matrix: &mut DiagMassMatrix<M>) -> bool {
121 if self.current_count() < 3 {
122 return false;
123 }
124
125 let (draw_var, draw_scale) = self.exp_variance_draw.current();
126 let (grad_var, grad_scale) = self.exp_variance_grad.current();
127 assert!(draw_scale == grad_scale);
128
129 if self._settings.use_grad_based_estimate {
130 mass_matrix.update_diag_draw_grad(
131 math,
132 draw_var,
133 grad_var,
134 None,
135 (LOWER_LIMIT, UPPER_LIMIT),
136 );
137 } else {
138 let scale = (self.exp_variance_draw.count() as f64).recip();
139 mass_matrix.update_diag_draw(math, draw_var, scale, None, (LOWER_LIMIT, UPPER_LIMIT));
140 }
141
142 true
143 }
144
145 fn new(math: &mut M, options: Self::Options, _num_tune: u64, _chain: u64) -> Self {
146 Self {
147 exp_variance_draw: RunningVariance::new(math),
148 exp_variance_grad: RunningVariance::new(math),
149 exp_variance_draw_bg: RunningVariance::new(math),
150 exp_variance_grad_bg: RunningVariance::new(math),
151 _settings: options,
152 _phantom: PhantomData,
153 }
154 }
155
156 fn init<R: Rng + ?Sized>(
157 &mut self,
158 math: &mut M,
159 _options: &mut NutsOptions,
160 mass_matrix: &mut Self::MassMatrix,
161 point: &impl Point<M>,
162 _rng: &mut R,
163 ) -> Result<(), NutsError> {
164 self.exp_variance_draw.add_sample(math, point.position());
165 self.exp_variance_draw_bg.add_sample(math, point.position());
166 self.exp_variance_grad.add_sample(math, point.gradient());
167 self.exp_variance_grad_bg.add_sample(math, point.gradient());
168
169 mass_matrix.update_diag_grad(
170 math,
171 point.gradient(),
172 1f64,
173 (INIT_LOWER_LIMIT, INIT_UPPER_LIMIT),
174 );
175 Ok(())
176 }
177
178 fn new_collector(&self, math: &mut M) -> Self::Collector {
179 DrawGradCollector::new(math)
180 }
181}