Crate nuts_rs

Source
Expand description

Sample from posterior distributions using the No U-turn Sampler (NUTS). For details see the original NUTS paper and the more recent introduction.

This crate was developed as a faster replacement of the sampler in PyMC, to be used with the new numba backend of PyTensor. The python wrapper for this sampler is nutpie.

§Usage

use nuts_rs::{CpuLogpFunc, CpuMath, LogpError, DiagGradNutsSettings, Chain, Progress,
Settings};
use thiserror::Error;
use rand::thread_rng;

// Define a function that computes the unnormalized posterior density
// and its gradient.
#[derive(Debug)]
struct PosteriorDensity {}

// The density might fail in a recoverable or non-recoverable manner...
#[derive(Debug, Error)]
enum PosteriorLogpError {}
impl LogpError for PosteriorLogpError {
    fn is_recoverable(&self) -> bool { false }
}

impl CpuLogpFunc for PosteriorDensity {
    type LogpError = PosteriorLogpError;

    // Only used for transforming adaptation.
    type TransformParams = ();

    // We define a 10 dimensional normal distribution
    fn dim(&self) -> usize { 10 }

    // The normal likelihood with mean 3 and its gradient.
    fn logp(&mut self, position: &[f64], grad: &mut [f64]) -> Result<f64, Self::LogpError> {
        let mu = 3f64;
        let logp = position
            .iter()
            .copied()
            .zip(grad.iter_mut())
            .map(|(x, grad)| {
                let diff = x - mu;
                *grad = -diff;
                -diff * diff / 2f64
            })
            .sum();
        return Ok(logp)
    }
}

// We get the default sampler arguments
let mut settings = DiagGradNutsSettings::default();

// and modify as we like
settings.num_tune = 1000;
settings.maxdepth = 3;  // small value just for testing...

// We instanciate our posterior density function
let logp_func = PosteriorDensity {};
let math = CpuMath::new(logp_func);

let chain = 0;
let mut rng = thread_rng();
let mut sampler = settings.new_chain(0, math, &mut rng);

// Set to some initial position and start drawing samples.
sampler.set_position(&vec![0f64; 10]).expect("Unrecoverable error during init");
let mut trace = vec![];  // Collection of all draws
for _ in 0..2000 {
    let (draw, info) = sampler.draw().expect("Unrecoverable error during sampling");
    trace.push(draw);
}

Users can also implement the Model trait for more control and parallel sampling.

§Implementation details

This crate mostly follows the implementation of NUTS in Stan and PyMC, only tuning of mass matrix and step size differs somewhat.

Structs§

ChainOutput
ChainProgress
CpuMath
DiagAdaptExpSettings
Settings for mass matrix adaptation
DivergenceInfo
Details about a divergence that might have occured during sampling
DualAverageSettings
EuclideanAdaptOptions
LowRankSettings
NutsSettings
Settings for the NUTS sampler
Progress
ProgressCallback
Sampler
Trace
TransformedSettings

Enums§

NutsError
SamplerWaitResult

Traits§

Chain
Draw samples from the posterior distribution using Hamiltonian MCMC.
CpuLogpFunc
DrawStorage
LogpError
Errors that happen when we evaluate the logp and gradient function
Math
Model
Settings
All sampler configurations implement this trait

Functions§

sample_sequentially

Type Aliases§

DiagGradNutsSettings
LowRankNutsSettings
TransformedNutsSettings