1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// MIT License
//
// Copyright (c) 2022-2024 Robin Doer
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

//! # The basic container
//!
//! This module contains types for the basic container handling. A
//! [`Container`] acts like an encrypted block device, where you can read and
//! write encrypted blocks of data. See the [`Container`] documentation for
//! details.
//!
//! The [`Container`] has no knowlege about the storage layer. Every type that
//! implements the [`Backend`] trait can act as the storage layer for the
//! [`Container`]. The [`Container`] receives (possibly) encrypted data from
//! the backend and pushes (possibly) encrypted data back to the backend.
//! See the [`backend` crate](nuts_backend) documentation for details.
//!
//! ## Create a container
//!
//! The [`Container::create()`] method is used to create a new container. It
//! expects an instance of a type that implements the [`Create`] trait, which
//! acts as a builder for the related [`Backend`].
//!
//! Example:
//!
//! ```rust
//! use nuts_container::*;
//! use nuts_memory::MemoryBackend;
//!
//! // Create a container with a memory backend.
//! let backend = MemoryBackend::new();
//!
//! // Let's create an encrypted container (with aes128-ctr).
//! // Because you are encrypting the container, you need to assign a
//! // password callback.
//! let kdf = Kdf::pbkdf2(Digest::Sha1, 65536, b"123");
//! let options = CreateOptionsBuilder::new(Cipher::Aes128Ctr)
//!     .with_password_callback(|| Ok(b"abc".to_vec()))
//!     .with_kdf(kdf.clone())
//!     .build::<MemoryBackend>()
//!     .unwrap();
//!
//! // Create the container and fetch information.
//! // Here you can directly pass the backend instance to the create() method
//! // because MemoryBackend implements the Backend::CreateOptions trait.
//! let container = Container::<MemoryBackend>::create(backend, options).unwrap();
//! let info = container.info().unwrap();
//!
//! assert_eq!(info.cipher, Cipher::Aes128Ctr);
//! assert_eq!(info.kdf, kdf);
//! ```
//!
//! ## Open a container
//!
//! The [`Container::open()`] method is used to open a container. It expects an
//! instance of a type that implements the [`Open`] trait, which acts as a
//! builder for the related [`Backend`].
//!
//! Example:
//!
//! ```rust
//! use nuts_container::*;
//! use nuts_memory::MemoryBackend;
//!
//! let (backend, kdf) = {
//!     // In this example you create a container in a separate block.
//!     // So, the created container is closed again when leaving the scope.
//!     let backend = MemoryBackend::new();
//!     let kdf = Kdf::pbkdf2(Digest::Sha1, 65536, b"123");
//!     let options = CreateOptionsBuilder::new(Cipher::Aes128Ctr)
//!         .with_password_callback(|| Ok(b"abc".to_vec()))
//!         .with_kdf(kdf.clone())
//!         .build::<MemoryBackend>()
//!         .unwrap();
//!
//!     // Create the container.
//!     let container = Container::<MemoryBackend>::create(backend, options).unwrap();
//!     let backend = container.into_backend();
//!
//!     (backend, kdf)
//! };
//!
//! // Open the container and fetch information.
//! // Here you can directly pass the backend instance to the open() method
//! // because MemoryBackend implements the Backend::OpenOptions trait.
//! let options = OpenOptionsBuilder::new()
//!     .with_password_callback(|| Ok(b"abc".to_vec()))
//!     .build::<MemoryBackend>()
//!     .unwrap();
//! let container = Container::<MemoryBackend>::open(backend, options).unwrap();
//! let info = container.info().unwrap();
//!
//! assert_eq!(info.cipher, Cipher::Aes128Ctr);
//! assert_eq!(info.kdf, kdf);
//! ```
//!
//! ## Read from a container
//!
//! ```rust
//! use nuts_container::*;
//! use nuts_memory::MemoryBackend;
//!
//! // Create a container with a memory backend.
//! let mut backend = MemoryBackend::new();
//!
//! // Insert a block into the backend.
//! // Note that the insert() method is a part of the MemoryBackend and directly
//! // inserts a block into the backend (bypassing the crypto capabilities of the
//! // container).
//! let id = backend.insert().unwrap();
//!
//! // Create the container.
//! let options = CreateOptionsBuilder::new(Cipher::None)
//!     .build::<MemoryBackend>()
//!     .unwrap();
//! let mut container = Container::<MemoryBackend>::create(backend, options).unwrap();
//!
//! // Read full block.
//! let mut buf = [b'x'; 512];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 512);
//! assert_eq!(buf, [0; 512]);
//!
//! // Read block into a buffer which is smaller than the block-size.
//! // The buffer is filled with the first 400 bytes from the block.
//! let mut buf = [b'x'; 400];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 400);
//! assert_eq!(buf, [0; 400]);
//!
//! // Read block into a buffer which is bigger than the block-size.
//! // The first 512 bytes are filled with the content of the block,
//! // the remaining 8 bytes are not touched.
//! let mut buf = [b'x'; 520];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 512);
//! assert_eq!(buf[..512], [0; 512]);
//! assert_eq!(buf[512..], [b'x'; 8]);
//! ```
//!
//! ## Write into a container
//!
//! ```rust
//! use nuts_container::*;
//! use nuts_memory::MemoryBackend;
//!
//! // In this example you create a container in a separate block.
//! // So, the created container is closed again when leaving the scope.
//! let mut backend = MemoryBackend::new();
//!
//! // Insert a block into the backend.
//! // Note that the insert() method is a part of the MemoryBackend and directly
//! // inserts a block into the backend (bypassing the crypto capabilities of the
//! // container).
//! let id = backend.insert().unwrap();
//!
//! // Create the container.
//! let options = CreateOptionsBuilder::new(Cipher::None)
//!     .build::<MemoryBackend>()
//!     .unwrap();
//! let mut container = Container::<MemoryBackend>::create(backend, options).unwrap();
//!
//! // Write a full block. The whole block is filled with 'x'.
//! assert_eq!(container.write(&id, &[b'x'; 512]).unwrap(), 512);
//!
//! let mut buf = [0; 512];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 512);
//! assert_eq!(buf, [b'x'; 512]);
//!
//! // Write a block from a buffer which is smaller than the block-size.
//! // The first bytes of the block are filled with the data from the buffer,
//! // the remaining space is padded with '0'.
//! assert_eq!(container.write(&id, &[b'x'; 400]).unwrap(), 400);
//!
//! let mut buf = [0; 512];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 512);
//! assert_eq!(buf[..400], [b'x'; 400]);
//! assert_eq!(buf[400..], [0; 112]);
//!
//! // Write a block from a buffer which is bigger than the block-size.
//! // The block is filled with the first data from the buffer.
//! assert_eq!(container.write(&id, &[b'x'; 520]).unwrap(), 512);
//!
//! let mut buf = [0; 512];
//! assert_eq!(container.read(&id, &mut buf).unwrap(), 512);
//! assert_eq!(buf, [b'x'; 512]);
//! ```
//!
//! ## The header of a container
//!
//! The header of the container stores all data necessary to open the container
//! again. There are:
//!
//! * The [`Cipher`]: The cipher defines the cipher used for encryption and
//!   decryption of the individual blocks of the container.
//!
//!   If the cipher is set to [`Cipher::None`], then encryption is disabled and
//!   all the data are stored unencrypted in the container.
//!
//!   If encryption is enabled (with a cipher which is not [`Cipher::None`]),
//!   then the blocks of the container are encrypted with a master-key stored
//!   and secured in the header of the container. This part of the header
//!   (other sensible data are also stored there) is called _secret_ and is
//!   encrypted with the wrapping-key derivited by the key derivation function
//!   ([`Kdf`]). So, with a user supplied passphrase you are derivating the
//!   wrapping-key, which decrypts the _secret_ part of the header, where the
//!   master-key (used for en-/decryption of the data blocks) is stored.
//!
//! * The key derivation function ([`Kdf`]) defines a way to create a key from
//!   a user supplied passphrase. In the next step this key is used to encrypt resp.
//!   decrypt the _secret_ part of the header.
//!
//! * The _secret_ is the encrypted part of the header and contains sensible
//!   data of the container. The secret is encrypted with a wrapping-key, which
//!   is the output of the [`Kdf`]. The _secret_ contains:
//!
//!   * _master-key_: The master-key is used for encryption of the blocks of
//!     the container.
//!
//!   * _userdata_: Any service running on top of the container can store
//!     individual, arbitrary data in the header. Usually the data are used for
//!     bootstrapping the service.
//!
//!   * _settings of the backend_: The backend of the container stores its
//!     runtime information in the secret. It gets it back when opening the
//!     backend again. See [`Backend::Settings`] for more information.

mod buffer;
mod cipher;
mod digest;
mod error;
mod header;
mod info;
mod kdf;
mod options;
mod ossl;
mod password;
mod svec;
#[cfg(test)]
mod tests;

use log::debug;
use nuts_backend::{Backend, Create, Open, ReceiveHeader, HEADER_MAX_SIZE};
use std::{any, cmp};

use crate::cipher::CipherContext;
use crate::header::Header;
use crate::password::PasswordStore;

pub use buffer::BufferError;
pub use cipher::{Cipher, CipherError};
pub use digest::Digest;
pub use error::{ContainerResult, Error};
pub use header::HeaderError;
pub use info::Info;
pub use kdf::{Kdf, KdfError};
pub use options::{CreateOptions, CreateOptionsBuilder, OpenOptions, OpenOptionsBuilder};
pub use password::PasswordError;

macro_rules! map_err {
    ($result:expr) => {
        $result.map_err(|cause| Error::Backend(cause))
    };
}

/// The Container type.
///
/// A `Container` acts like an encrypted block device, where you can read and
/// write encrypted blocks of data.
///
/// To create a new container use the [`Container::create`] method. You can
/// open an existing container with the [`Container::open`] method. With the
/// [`Container::read`] and [`Container::write`] methods you can read data from
/// the container resp. write data into the container.
#[derive(Debug)]
pub struct Container<B: Backend> {
    backend: B,
    store: PasswordStore,
    header: Header,
    ctx: CipherContext,
}

impl<B: Backend> Container<B> {
    /// Creates a new container.
    ///
    /// This method expects two arguments:
    ///
    /// 1. `backend_options`, which is a type that implements the
    ///    [`Create`] trait. It acts as a builder for a concrete [`Backend`]
    ///    instance.
    /// 2. `options`, which is a builder of this `Container`. A
    ///    [`CreateOptions`] instance can be created with the
    ///    [`CreateOptionsBuilder`] utility.
    ///
    /// If encryption is turned on, you will be asked for a password over the
    /// [password callback](CreateOptionsBuilder::with_password_callback). The
    /// returned password is then used for encryption of the secure part of the
    /// header.
    ///
    /// The header with the (possibly encrypted) secret is created and passed
    /// to the [`Backend`]. The header contains all information you need to
    /// open the container again.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn create<C: Create<B>>(
        backend_options: C,
        options: CreateOptions,
    ) -> ContainerResult<Container<B>, B> {
        let mut header_bytes = [0; HEADER_MAX_SIZE];
        let header = Header::create(&options)?;
        let settings = backend_options.settings();

        let callback = options.callback.clone();
        let mut store = PasswordStore::new(callback);

        header.write::<B>(settings, &mut header_bytes, &mut store)?;

        let backend = map_err!(backend_options.build(header_bytes, options.overwrite))?;

        debug!(
            "Container created, backend: {}, header: {:?}",
            any::type_name::<B>(),
            header
        );

        let ctx = CipherContext::new(header.cipher);

        Ok(Container {
            backend,
            store,
            header,
            ctx,
        })
    }

    /// Opens an existing container.
    ///
    /// This method expects two arguments:
    ///
    /// 1. `backend_options`, which is a type that implements the [`Open`]
    ///    trait. It acts as a builder for a concrete [`Backend`] instance.
    /// 2. `options`, which is a builder of this `Container`. A
    ///    [`OpenOptions`] instance can be created with the
    ///    [`OpenOptionsBuilder`] utility.
    ///
    /// If encryption is turned on for the container, you will be asked for a
    /// password over the
    /// [password callback](OpenOptionsBuilder::with_password_callback). The
    /// returned password is then used to decrypt the secure part of the header.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn open<O: Open<B>>(
        mut backend_options: O,
        options: OpenOptions,
    ) -> ContainerResult<Container<B>, B> {
        let callback = options.callback.clone();
        let mut store = PasswordStore::new(callback);

        let (header, settings) = Self::read_header(&mut backend_options, &mut store)?;
        let backend = map_err!(backend_options.build(settings))?;

        debug!(
            "Container opened, backend: {}, header: {:?}",
            any::type_name::<B>(),
            header
        );

        let ctx = CipherContext::new(header.cipher);

        Ok(Container {
            backend,
            store,
            header,
            ctx,
        })
    }

    /// Returns the backend of this container.
    pub fn backend(&self) -> &B {
        &self.backend
    }

    /// Consumes this container, returning the inner backend.
    pub fn into_backend(self) -> B {
        self.backend
    }

    /// Returns information from the container.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn info(&self) -> ContainerResult<Info<B>, B> {
        let backend = map_err!(self.backend.info())?;

        Ok(Info {
            backend,
            cipher: self.header.cipher,
            kdf: self.header.kdf.clone(),
            bsize_gross: self.backend.block_size(),
            bsize_net: self.block_size(),
        })
    }

    /// Returns userdata assigned to the container.
    ///
    /// Userdata are arbitrary data stored in the (encrypted) header of the
    /// container. It can be used by a service running on top of a _nuts_
    /// container to store information about the service itself.
    pub fn userdata(&self) -> &[u8] {
        &self.header.userdata
    }

    /// Updates the userdata.
    ///
    /// Assigns a new set of new userdata to the container; any previous
    /// userdata are overwritten.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn update_userdata(&mut self, userdata: &[u8]) -> ContainerResult<(), B> {
        let (mut header, settings) = Self::read_header(&mut self.backend, &mut self.store)?;
        let mut header_bytes = [0; HEADER_MAX_SIZE];

        header.userdata.clear();
        header.userdata.extend_from_slice(userdata);

        header.write::<B>(settings, &mut header_bytes, &mut self.store)?;
        map_err!(self.backend.write_header(&header_bytes))?;

        self.header = header;

        Ok(())
    }

    /// The (net) block size specifies the number of userdata bytes you can
    /// store in a block. It can be less than the gross block size specified by
    /// the [backend](Backend::block_size)!
    ///
    /// Depending on the selected cipher, you need to store additional data in
    /// a block. I.e. an AE-cipher results into a tag, which needs to be stored
    /// additionally. Such data must be substracted from the gross block size
    /// and results into the net block size.
    pub fn block_size(&self) -> u32 {
        self.backend
            .block_size()
            .saturating_sub(self.header.cipher.tag_size())
    }

    /// Aquires a new block in the backend.
    ///
    /// Once aquired you should be able to [read](Container::read) and
    /// [write](Container::write) from/to it.
    ///
    /// By default an aquired block, which is not written yet, returns an
    /// all-zero buffer.
    ///
    /// Returns the [id](Backend::Id) of the block.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn aquire(&mut self) -> ContainerResult<B::Id, B> {
        let key = &self.header.key;
        let iv = &self.header.iv;

        self.ctx.copy_from_slice(self.block_size() as usize, &[]);
        let ctext = self.ctx.encrypt(key, iv)?;

        map_err!(self.backend.aquire(ctext))
    }

    /// Releases a block again.
    ///
    /// A released block cannot be [read](Container::read) and
    /// [written](Container::write), the [id](Backend::Id) cannot be used
    /// afterwards.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn release(&mut self, id: B::Id) -> ContainerResult<(), B> {
        map_err!(self.backend.release(id))
    }

    /// Reads a block from the container.
    ///
    /// Reads the block with the given `id` and places the decrypted data in
    /// `buf`.
    ///
    /// You cannot read not more data than [block-size](Backend::block_size)
    /// bytes. If `buf` is larger, than not the whole buffer is filled. In the
    /// other direction, if `buf` is not large enough to store the whole block,
    /// `buf` is filled with the first `buf.len()` bytes.
    ///
    /// The methods returns the number of bytes actually read, which cannot be
    /// greater than the [block-size](Backend::block_size).
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn read(&mut self, id: &B::Id, buf: &mut [u8]) -> ContainerResult<usize, B> {
        let ctext = self.ctx.inp_mut(self.backend.block_size() as usize);
        map_err!(self.backend.read(id, ctext))?;

        let key = &self.header.key;
        let iv = &self.header.iv;

        let ptext = self.ctx.decrypt(key, iv)?;

        let n = cmp::min(ptext.len(), buf.len());
        buf[..n].copy_from_slice(&ptext[..n]);

        Ok(n)
    }

    /// Writes a block into the container.
    ///
    /// Encrypts the plain data from `buf` and writes the encrypted data into
    /// the block with the given `id`.
    ///
    /// Writes up to `buf.len()` bytes from the unencrypted `buf` buffer into
    /// the container.
    ///
    /// If `buf` is not large enough to fill the whole block, the destination
    /// block is automatically padded with all zeros.
    ///
    /// If `buf` holds more data than the block-size, then the first
    /// [block-size](Backend::block_size) bytes are copied into the block.
    ///
    /// The method returns the number of bytes actually written.
    ///
    /// # Errors
    ///
    /// Errors are listed in the [`Error`] type.
    pub fn write(&mut self, id: &B::Id, buf: &[u8]) -> ContainerResult<usize, B> {
        let len = self.ctx.copy_from_slice(self.block_size() as usize, buf);

        let key = &self.header.key;
        let iv = &self.header.iv;

        let ctext = self.ctx.encrypt(key, iv)?;

        map_err!(self.backend.write(id, ctext)).map(|_| len)
    }

    fn read_header<H: ReceiveHeader<B>>(
        reader: &mut H,
        store: &mut PasswordStore,
    ) -> ContainerResult<(Header, B::Settings), B> {
        let mut buf = [0; HEADER_MAX_SIZE];

        match reader.get_header_bytes(&mut buf) {
            Ok(_) => {
                debug!("got {} header bytes", buf.len());
                Ok(Header::read::<B>(&buf, store)?)
            }
            Err(cause) => Err(Error::Backend(cause)),
        }
    }

    /// Deletes the entire container and all traces.
    ///
    /// The method must not fail!
    pub fn delete(self) {
        self.backend.delete()
    }
}