vpartial_derivative

Function vpartial_derivative 

Source
pub fn vpartial_derivative<V, U>(
    f: &impl Fn(&V) -> U,
    x0: &V,
    k: usize,
    h: Option<f64>,
) -> U
where V: Vector<f64>, U: Vector<f64>,
Expand description

Partial derivative of a multivariate, vector-valued function using the forward difference approximation.

§Arguments

  • f - Multivariate, vector-valued function, $\mathbf{f}:\mathbb{R}^{n}\to\mathbb{R}^{m}$.
  • x0 - Evaluation point, $\mathbf{x}_{0}\in\mathbb{R}^{n}$.
  • k - Element of $\mathbf{x}$ to differentiate with respect to. Note that this uses 0-based indexing (e.g. $\mathbf{x}=\left(x_{0},…,x_{k},…,x_{n-1}\right)^{T}$).
  • h - Relative step size, $h\in\mathbb{R}$. Defaults to SQRT_EPS.

§Returns

Partial derivative of $\mathbf{f}$ with respect to $x_{k}$, evaluated at $\mathbf{x}=\mathbf{x}_{0}$.

$$\frac{d\mathbf{f}}{dx_{k}}\bigg\rvert_{\mathbf{x}=\mathbf{x}_{0}}\in\mathbb{R}^{m}$$

§Note

This function performs 2 evaluations of $\mathbf{f}(\mathbf{x})$.

§Example

Approximate the partial derivative of

$$\mathbf{f}(\mathbf{x})=\begin{bmatrix}\sin{x_{0}}\sin{x_{1}}\\\cos{x_{0}}\cos{x_{1}}\end{bmatrix}$$

with respect to $x_{0}$ at $\mathbf{x}=(1,2)^{T}$, and compare the result to the true result of

$$ \frac{\partial\mathbf{f}}{\partial x_{0}}\bigg\rvert_{\mathbf{x}=(1,2)^{T}}= \begin{bmatrix} \cos{(1)}\sin{(2)} \\ -\sin{(1)}\cos{(2)} \end{bmatrix} $$

§Using standard vectors
use numtest::*;

use numdiff::forward_difference::vpartial_derivative;

// Define the function, f(x).
let f = |x: &Vec<f64>| vec![x[0].sin() * x[1].sin(), x[0].cos() * x[1].cos()];

// Define the evaluation point.
let x0 = vec![1.0, 2.0];

// Define the element of the vector (using 0-based indexing) we are differentiating with respect
// to.
let k = 0;

// Approximate the partial derivative of f(x) with respect to x₀ at the evaluation point.
let pf: Vec<f64> = vpartial_derivative(&f, &x0, k, None);

// True partial derivative of f(x) with respect to x₀ at the evaluation point.
let pf_true: Vec<f64> = vec![1.0_f64.cos() * 2.0_f64.sin(), -1.0_f64.sin() * 2.0_f64.cos()];

// Check the accuracy of the partial derivative approximation.
assert_arrays_equal_to_decimal!(pf, pf_true, 8);
§Using other vector types

We can also use other types of vectors, such as nalgebra::SVector, nalgebra::DVector, ndarray::Array1, faer::Mat, or any other type of vector that implements the linalg_traits::Vector trait.

use faer::Mat;
use linalg_traits::Vector;  // to provide from_slice method for faer::Mat
use nalgebra::{dvector, DVector, SVector};
use ndarray::{array, Array1};
use numtest::*;

use numdiff::forward_difference::vpartial_derivative;

let k = 0;

let pf_true: Vec<f64> = vec![1.0_f64.cos() * 2.0_f64.sin(), -1.0_f64.sin() * 2.0_f64.cos()];

// nalgebra::DVector
let f_dvector = |x: &DVector<f64>| dvector![x[0].sin() * x[1].sin(), x[0].cos() * x[1].cos()];
let x0_dvector: DVector<f64> = dvector![1.0, 2.0];
let pf_dvector: DVector<f64> = vpartial_derivative(&f_dvector, &x0_dvector, k, None);
assert_arrays_equal_to_decimal!(pf_dvector, pf_true, 8);

// nalgebra::SVector
let f_svector = |x: &SVector<f64, 2>| {
    SVector::from_row_slice(&[x[0].sin() * x[1].sin(), x[0].cos() * x[1].cos()])
};
let x0_svector: SVector<f64, 2> = SVector::from_row_slice(&[1.0, 2.0]);
let pf_svector: SVector<f64, 2> = vpartial_derivative(&f_svector, &x0_svector, k, None);
assert_arrays_equal_to_decimal!(pf_svector, pf_true, 8);

// ndarray::Array1
let f_array1 = |x: &Array1<f64>| array![x[0].sin() * x[1].sin(), x[0].cos() * x[1].cos()];
let x0_array1: Array1<f64> = array![1.0, 2.0];
let pf_array1: Array1<f64> = vpartial_derivative(&f_array1, &x0_array1, k, None);
assert_arrays_equal_to_decimal!(pf_array1, pf_true, 8);

// faer::Mat
let f_mat = |x: &Mat<f64>| {
    Mat::from_slice(&[
        x[(0, 0)].sin() * x[(1, 0)].sin(),
        x[(0, 0)].cos() * x[(1, 0)].cos(),
    ])
};
let x0_mat: Mat<f64> = Mat::from_slice(&[1.0, 2.0]);
let pf_mat: Mat<f64> = vpartial_derivative(&f_mat, &x0_mat, k, None);
assert_arrays_equal_to_decimal!(pf_mat.as_slice(), pf_true, 8);
§Modifying the relative step size

We can also modify the relative step size. Choosing a coarser relative step size, we get a worse approximation.

use numtest::*;

use numdiff::forward_difference::vpartial_derivative;

let f = |x: &Vec<f64>| vec![x[0].sin() * x[1].sin(), x[0].cos() * x[1].cos()];
let x0 = vec![1.0, 2.0];
let k = 0;

let pf: Vec<f64> = vpartial_derivative(&f, &x0, k, Some(0.001));
let pf_true: Vec<f64> = vec![1.0_f64.cos() * 2.0_f64.sin(), -1.0_f64.sin() * 2.0_f64.cos()];

assert_arrays_equal_to_decimal!(pf, pf_true, 3);