1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
use std::fmt::Display;
use std::ops::{Add, Div, Mul, Sub};
use std::str;
use crate::utils::{self, from_string};
use crate::NumberBase;
use crate::graphemes::GRAPHEMES;
use super::operations::*;
#[allow(non_camel_case_types)]
#[derive(Debug, Clone)]
pub struct uBase {
digits: Vec<u16>,
base: u16,
}
impl NumberBase for uBase {
type DecimalType = u128;
// returns a quotient and a remainder in the base of self
fn base(&self) -> u16 {
self.base
}
// done
fn digits(&self) -> &Vec<u16> {
&self.digits
}
// done
fn convert(&mut self, base: u16) -> Self {
let res = utils::convert(self.base, self.digits.clone(), base);
self.digits = res;
self.base = base;
self.clone()
}
// takes a base and ints associated number. Note that the nubmer is a string to account for
// bases over 10
fn from_string(base: u16, number: &str) -> Self {
let digits = from_string(base, number);
Self { digits, base }
}
fn from_vec(base: u16, number: Vec<u16>) -> Self {
Self {
digits: number,
base,
}
}
fn greater_than(&self, number: Self) -> bool {
let mut number = number;
if self.base != number.base {
number.convert(self.base);
}
greater_than(self.digits(), number.digits())
}
fn as_binary(&self) -> Self::DecimalType {
let mut binding_value = self.clone();
binding_value.convert(2);
binding_value.display_sub10().unwrap()
}
fn as_octal(&self) -> Self::DecimalType {
let mut binding_value = self.clone();
binding_value.convert(8);
binding_value.display_sub10().unwrap()
}
fn as_decimal(&self) -> Self::DecimalType {
let mut binding_value = self.clone();
binding_value.convert(10);
binding_value.display_sub10().unwrap()
}
fn as_hex(&self) -> String {
let mut binding_value = self.clone();
binding_value.convert(16);
binding_value.display()
}
// return a string that corresponds to the number stored in self.digits
fn display(&self) -> String {
let mut res_string = String::new();
let grapheme_collection: String = self
.digits
.iter()
.map(|x| {
str::from_utf8(
GRAPHEMES
.get(x)
.expect("Internal error. Could not fetch digit form graphemes map"),
)
.unwrap()
})
.collect();
res_string += &grapheme_collection;
if res_string.is_empty() {
String::from("0")
} else {
res_string.split('\0').collect()
}
}
}
impl Display for uBase {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.display())
}
}
impl uBase {
// Commonly used bases as a shorthand
fn display_sub10(&mut self) -> Option<u128> {
if self.base > 10 {
return None;
}
let str: String = self.display();
let number: u128 = str.parse().unwrap();
Some(number)
}
}
/// uBase instances can be added together just like regular numbers unsing the '+' operator.
/// Do note however that the resulting uBase instance will be of the same base as the first
/// term. uBase instances of different bases can be added together without issue.
///
/// Example:
///
/// ```rust
/// // create the uBase instances
/// let number1 = uBase::from_string(20, "1287");
/// assert_eq!(number1.as_decimal(), 8967);
///
/// let number2 = uBase::from_string(15, "1238970");
/// assert_eq!(number2.as_decimal(), 13090380);
///
/// // add the numbers
/// let res = number1 + number2;
/// assert_eq!(res.base(), 20); // because number1 is of base 20, res will also be of base 20
///
/// assert_eq!(res.as_decimal(), 8967 + 13090380);
/// ```
impl Add for uBase {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut rhs = rhs;
if self.base != rhs.base {
rhs.convert(self.base);
}
let digits = add(self.base, self.digits(), rhs.digits());
Self {
digits,
base: self.base,
}
}
}
/// uBase instances can be subtracted just like regular nubers using the '-' operator.
/// Do note however that the resulting uBase instance will be of the same base as the first
/// term. uBase instances of different bases can be subtracted without issue.
///
/// Do also note that the uBase struct does not support negative numbers, so subtracting a
/// larger number from a smaller one will result in a panic!
///
/// Example:
///
/// ```rust
///
/// // create the uBase instances
/// let number1 = uBase::from_string(20, "1234876");
/// assert_eq!(number1.as_decimal(), 70915346);
///
/// let number2 = uBase::from_string(15, "3245");
/// assert_eq!(number2.as_decimal(), 10640);
///
/// // subtract the numbers
/// let res = number1 - number2;
///
/// assert_eq!(res.as_decimal(), 70915346 - 10640);
/// ```
impl Sub for uBase {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut rhs = rhs;
if self.base != rhs.base {
rhs.convert(self.base);
}
if !self.greater_than(rhs.clone()) {
panic!("Attempted to subtract with overflow");
}
let digits = subtract(self.base, self.digits(), rhs.digits());
Self {
digits,
base: self.base,
}
}
}
/// uBase instances can be divided just like normal numbers using the '/' operator.
/// Do note however that the resulting uBase instance will be of the same base as the numerator.
/// uBase instances of different bases can be divided without issue.
///
/// This operation works just like regular integer division; that is, the quotient is rounded down
/// to the nearest whole number.
///
/// Example:
///
/// ```rust
///
/// // create the uBase instances
/// let number1 = uBase::from_string(17, "AB123");
/// assert_eq!(number1.as_decimal(), 889579);
///
/// let number2 = uBase::from_string(7, "456");
/// assert_eq!(number2.as_decimal(), 237);
///
/// // divide the numbers
/// let res = number1 / number2;
///
/// assert_eq!(res.as_decimal(), 889579 / 237);
/// ```
///
/// Do also note that if the demomenator is greater than the numerator, the quotient will always be
/// 0 (in whatever base the operation is performed)
///
/// Example:
///
/// ```rust
/// // --- snip ---
///
/// // divide the numbers (denomenator is greater than the numerator)
/// let res = number2 / number1;
///
/// // No matter what base res is, res.display will be "0".
/// // Hence res.as_decimal(), res.as_binary(), res.as_octal() etc. will all be 0.
/// assert_eq!(res.display(), String::from("0"));
/// ```
impl Div for uBase {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
let mut rhs = rhs;
if self.base != rhs.base {
rhs.convert(self.base);
}
let (quotient, _) = div(self.base, self.digits(), rhs.digits());
Self {
digits: quotient,
base: self.base,
}
}
}
/// uBase instances can be multiplied just like normal numbers using the '*' operator.
/// Do note however that the resulting uBase instance will be of the same base as the first
/// factor. uBase instances of different bases can be multiplied without issue.
///
///
/// Example:
///
/// ```rust
///
/// // create the uBase instances
/// let number1 = uBase::from_string(2, "1001011101101011");
/// assert_eq!(number1.as_decimal(), 38763);
///
/// let number2 = uBase::from_string(27, "ABGL");
/// assert_eq!(number2.as_decimal(), 205302);
///
///
/// // multiply the numbers
/// let res = number1 * number2;
///
/// assert_eq!(res.as_decimal(), 38763 * 205302);
/// ```
impl Mul for uBase {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let mut rhs = rhs;
if self.base != rhs.base {
rhs.convert(self.base);
}
let digits = mul(self.base, self.digits(), rhs.digits());
Self {
digits,
base: self.base,
}
}
}