Struct num256::int256::Int256

source ·
pub struct Int256(pub BigInt);

Tuple Fields§

§0: BigInt

Implementations§

Methods from Deref<Target = BigInt>§

Returns the sign and the byte representation of the BigInt in big-endian byte order.

Examples
use num_bigint::{ToBigInt, Sign};

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));

Returns the sign and the byte representation of the BigInt in little-endian byte order.

Examples
use num_bigint::{ToBigInt, Sign};

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));

Returns the sign and the u32 digits representation of the BigInt ordered least significant digit first.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-1125).to_u32_digits(), (Sign::Minus, vec![1125]));
assert_eq!(BigInt::from(4294967295u32).to_u32_digits(), (Sign::Plus, vec![4294967295]));
assert_eq!(BigInt::from(4294967296u64).to_u32_digits(), (Sign::Plus, vec![0, 1]));
assert_eq!(BigInt::from(-112500000000i64).to_u32_digits(), (Sign::Minus, vec![830850304, 26]));
assert_eq!(BigInt::from(112500000000i64).to_u32_digits(), (Sign::Plus, vec![830850304, 26]));

Returns the two’s-complement byte representation of the BigInt in big-endian byte order.

Examples
use num_bigint::ToBigInt;

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);

Returns the two’s-complement byte representation of the BigInt in little-endian byte order.

Examples
use num_bigint::ToBigInt;

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);

Returns the integer formatted as a string in the given radix. radix must be in the range 2...36.

Examples
use num_bigint::BigInt;

let i = BigInt::parse_bytes(b"ff", 16).unwrap();
assert_eq!(i.to_str_radix(16), "ff");

Returns the integer in the requested base in big-endian digit order. The output is not given in a human readable alphabet but as a zero based u8 number. radix must be in the range 2...256.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
           (Sign::Minus, vec![2, 94, 27]));
// 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27

Returns the integer in the requested base in little-endian digit order. The output is not given in a human readable alphabet but as a zero based u8 number. radix must be in the range 2...256.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
           (Sign::Minus, vec![27, 94, 2]));
// 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)

Returns the sign of the BigInt as a Sign.

Examples
use num_bigint::{ToBigInt, Sign};

assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus);
assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus);
assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign);

Determines the fewest bits necessary to express the BigInt, not including the sign.

Converts this BigInt into a BigUint, if it’s not negative.

Returns (self ^ exponent) mod modulus

Note that this rounds like mod_floor, not like the % operator, which makes a difference when given a negative self or modulus. The result will be in the interval [0, modulus) for modulus > 0, or in the interval (modulus, 0] for modulus < 0

Panics if the exponent is negative or the modulus is zero.

Returns the truncated principal square root of self – see Roots::sqrt.

Returns the truncated principal cube root of self – see Roots::cbrt.

Returns the truncated principal nth root of self – See Roots::nth_root.

Trait Implementations§

The resulting type after applying the + operator.
Performs the + operation. Read more
Performs the += operation. Read more
Adds two numbers, checking for overflow. If overflow happens, None is returned. Read more
Divides two numbers, checking for underflow, overflow and division by zero. If any of that happens, None is returned. Read more
Multiplies two numbers, checking for underflow or overflow. If underflow or overflow happens, None is returned. Read more
Subtracts two numbers, checking for underflow. If underflow happens, None is returned. Read more
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
The resulting type after dereferencing.
Dereferences the value.
Deserialize this value from the given Serde deserializer. Read more
Formats the value using the given formatter. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
Performs the /= operation. Read more
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
Converts this type into the (usually inferred) input type.
The resulting type after applying the * operator.
Performs the * operation. Read more
Performs the *= operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Serialize this value into the given Serde serializer. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
Performs the -= operation. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.