num_valid/core/traits/raw.rs
1#![deny(rustdoc::broken_intra_doc_links)]
2
3//! Raw trait definitions for unchecked scalar operations.
4//!
5//! This module defines the fundamental traits for raw number types (like `f64` or `rug::Float`).
6//! These traits provide `unchecked_*` methods that assume inputs are valid and do not perform
7//! any validation.
8//!
9//! # Trait Hierarchy
10//!
11//! ```text
12//! RawScalarTrigonometric ─┐
13//! RawScalarHyperbolic ────┼──> RawScalarTrait ──> RawRealTrait
14//! RawScalarPow ───────────┘ └──> RawComplexTrait
15//! ```
16
17use crate::{
18 Arithmetic, Conjugate, NeumaierAddable, ScalarCore,
19 core::{
20 errors::{
21 ErrorsRawRealToInteger, ErrorsTryFromf64, ErrorsValidationRawComplex,
22 ErrorsValidationRawReal,
23 },
24 traits::validation::{FpChecks, ValidationPolicyReal},
25 },
26 functions::{Rounding, Sign},
27};
28use std::{
29 cmp::Ordering,
30 hash::Hasher,
31 num::FpCategory,
32 ops::{Mul, MulAssign},
33};
34
35// =============================================================================
36// Trigonometric Operations
37// =============================================================================
38
39/// Trait for unchecked trigonometric operations.
40///
41/// Provides sine, cosine, tangent and their inverse functions without validation.
42pub trait RawScalarTrigonometric {
43 /// Computes the sine without validation.
44 fn unchecked_sin(self) -> Self;
45
46 /// Computes the arcsine without validation.
47 fn unchecked_asin(self) -> Self;
48
49 /// Computes the cosine without validation.
50 fn unchecked_cos(self) -> Self;
51
52 /// Computes the arccosine without validation.
53 fn unchecked_acos(self) -> Self;
54
55 /// Computes the tangent without validation.
56 fn unchecked_tan(self) -> Self;
57
58 /// Computes the arctangent without validation.
59 fn unchecked_atan(self) -> Self;
60}
61
62// =============================================================================
63// Hyperbolic Operations
64// =============================================================================
65
66/// Trait for unchecked hyperbolic operations.
67///
68/// Provides hyperbolic sine, cosine, tangent and their inverse functions without validation.
69pub trait RawScalarHyperbolic {
70 /// Computes the hyperbolic sine without validation.
71 fn unchecked_sinh(self) -> Self;
72
73 /// Computes the inverse hyperbolic sine without validation.
74 fn unchecked_asinh(self) -> Self;
75
76 /// Computes the hyperbolic cosine without validation.
77 fn unchecked_cosh(self) -> Self;
78
79 /// Computes the inverse hyperbolic cosine without validation.
80 fn unchecked_acosh(self) -> Self;
81
82 /// Computes the hyperbolic tangent without validation.
83 fn unchecked_tanh(self) -> Self;
84
85 /// Computes the inverse hyperbolic tangent without validation.
86 fn unchecked_atanh(self) -> Self;
87}
88
89// =============================================================================
90// Power Operations
91// =============================================================================
92
93/// Trait for unchecked power operations with integer exponents.
94///
95/// Provides power functions for all standard integer types without validation.
96pub trait RawScalarPow {
97 /// Raises `self` to the power of an `i8` exponent without validation.
98 ///
99 /// **Contract:** The caller must ensure the inputs are valid.
100 fn unchecked_pow_exponent_i8(self, exponent: &i8) -> Self;
101
102 /// Raises `self` to the power of an `i16` exponent without validation.
103 ///
104 /// **Contract:** The caller must ensure the inputs are valid.
105 fn unchecked_pow_exponent_i16(self, exponent: &i16) -> Self;
106
107 /// Raises `self` to the power of an `i32` exponent without validation.
108 ///
109 /// **Contract:** The caller must ensure the inputs are valid.
110 fn unchecked_pow_exponent_i32(self, exponent: &i32) -> Self;
111
112 /// Raises `self` to the power of an `i64` exponent without validation.
113 ///
114 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
115 /// includes ensuring the `exponent` is within the representable range of the underlying
116 /// power function (e.g., `i32` for `f64::powi`).
117 fn unchecked_pow_exponent_i64(self, exponent: &i64) -> Self;
118
119 /// Raises `self` to the power of an `i128` exponent without validation.
120 ///
121 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
122 /// includes ensuring the `exponent` is within the representable range of the underlying
123 /// power function (e.g., `i32` for `f64::powi`).
124 fn unchecked_pow_exponent_i128(self, exponent: &i128) -> Self;
125
126 /// Raises `self` to the power of an `isize` exponent without validation.
127 ///
128 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
129 /// includes ensuring the `exponent` is within the representable range of the underlying
130 /// power function (e.g., `i32` for `f64::powi`).
131 fn unchecked_pow_exponent_isize(self, exponent: &isize) -> Self;
132
133 /// Raises `self` to the power of a `u8` exponent without validation.
134 ///
135 /// **Contract:** The caller must ensure the inputs are valid.
136 fn unchecked_pow_exponent_u8(self, exponent: &u8) -> Self;
137
138 /// Raises `self` to the power of a `u16` exponent without validation.
139 ///
140 /// **Contract:** The caller must ensure the inputs are valid.
141 fn unchecked_pow_exponent_u16(self, exponent: &u16) -> Self;
142
143 /// Raises `self` to the power of a `u32` exponent without validation.
144 ///
145 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
146 /// includes ensuring the `exponent` is within the representable range of the underlying
147 /// power function (e.g., `i32` for `f64::powi`).
148 fn unchecked_pow_exponent_u32(self, exponent: &u32) -> Self;
149
150 /// Raises `self` to the power of a `u64` exponent without validation.
151 ///
152 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
153 /// includes ensuring the `exponent` is within the representable range of the underlying
154 /// power function (e.g., `i32` for `f64::powi`).
155 fn unchecked_pow_exponent_u64(self, exponent: &u64) -> Self;
156
157 /// Raises `self` to the power of a `u128` exponent without validation.
158 ///
159 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
160 /// includes ensuring the `exponent` is within the representable range of the underlying
161 /// power function (e.g., `i32` for `f64::powi`).
162 fn unchecked_pow_exponent_u128(self, exponent: &u128) -> Self;
163
164 /// Raises `self` to the power of a `usize` exponent without validation.
165 ///
166 /// **Contract:** The caller must ensure the inputs are valid. For integer powers, this
167 /// includes ensuring the `exponent` is within the representable range of the underlying
168 /// power function (e.g., `i32` for `f64::powi`).
169 fn unchecked_pow_exponent_usize(self, exponent: &usize) -> Self;
170}
171
172// =============================================================================
173// Core Scalar Trait
174// =============================================================================
175
176/// A baseline trait for raw scalar types, defining core operations and properties.
177///
178/// This trait must be implemented by the underlying number types used in a kernel,
179/// such as like [`f64`] or [`rug::Float`](https://docs.rs/rug/latest/rug/struct.Float.html).
180/// It provides a standard interface for arithmetic
181/// and a suite of `unchecked_*` methods for mathematical functions.
182///
183/// ## Hashing Support
184///
185/// All raw scalar types (both real and complex) must implement [`compute_hash()`](Self::compute_hash),
186/// which provides a consistent hashing mechanism. The hash implementation must ensure:
187///
188/// - **Mathematical Equality**: Values that are mathematically equal produce identical hashes
189/// - **Signed Zero Handling**: Both `+0.0` and `-0.0` hash to the same value
190/// - **Finite Values Only**: The hash is only well-defined for finite values (not NaN or infinity)
191/// - **Consistency**: The same value always produces the same hash across multiple calls
192///
193/// For complex numbers, the hash is computed by sequentially hashing the real and imaginary
194/// parts, ensuring that different complex numbers produce different hashes while maintaining
195/// the equality invariant.
196///
197/// This enables validated wrapper types to implement [`Hash`](std::hash::Hash) when their validation
198/// policies guarantee finite values (via [`crate::core::traits::validation::GuaranteesFiniteRealValues`]),
199/// allowing them to be used as keys in [`HashMap`](std::collections::HashMap) and [`HashSet`](std::collections::HashSet).
200///
201/// # Safety and Contracts
202///
203/// The `unchecked_*` methods are designed for performance and assume that the caller
204/// has already validated the inputs. Calling them with invalid data (e.g., `unchecked_sqrt`
205/// on a negative real number) may lead to panics, incorrect results, or undefined behavior,
206/// depending on the underlying type's implementation.
207pub trait RawScalarTrait:
208 ScalarCore
209 + Arithmetic
210 + NeumaierAddable
211 + FpChecks
212 + RawScalarTrigonometric
213 + RawScalarHyperbolic
214 + RawScalarPow
215{
216 /// The associated error type for validation failures of this raw type.
217 type ValidationErrors: std::error::Error;
218
219 /// Returns `true` if `self` is zero.
220 fn is_zero(&self) -> bool;
221
222 /// Returns zero with the given precision.
223 fn raw_zero(precision: u32) -> Self;
224
225 /// Returns one with the given precision.
226 fn raw_one(precision: u32) -> Self;
227
228 /// Returns negative one with the given precision.
229 #[inline(always)]
230 fn raw_negative_one(precision: u32) -> Self {
231 Self::raw_one(precision).neg()
232 }
233
234 /// Computes the reciprocal (1/x) without validation.
235 ///
236 /// **Contract:** The caller must ensure `self` is not zero.
237 fn unchecked_reciprocal(self) -> Self;
238
239 /// Computes the exponential (e^x) without validation.
240 ///
241 /// **Contract:** The caller must ensure the input is valid.
242 fn unchecked_exp(self) -> Self;
243
244 /// Computes the square root without validation.
245 ///
246 /// **Contract:** For real numbers, the caller must ensure `self >= 0`.
247 fn unchecked_sqrt(self) -> Self;
248
249 /// Computes the natural logarithm without validation.
250 fn unchecked_ln(self) -> Self;
251
252 /// Computes the base-2 logarithm without validation.
253 fn unchecked_log2(self) -> Self;
254
255 /// Computes the base-10 logarithm without validation.
256 fn unchecked_log10(self) -> Self;
257
258 /// Multiplies and adds in one fused operation, rounding to the nearest with only one rounding error.
259 ///
260 /// `a.mul_add(b, c)` produces a result like `a * &b + &c`.
261 ///
262 /// **Contract:** The caller must ensure all inputs are valid.
263 fn unchecked_mul_add(self, b: &Self, c: &Self) -> Self;
264
265 /// Computes a hash value for this scalar (real or complex).
266 ///
267 /// This method must ensure that mathematically equal values produce
268 /// the same hash, even across different representations (e.g., +0.0 and -0.0).
269 ///
270 /// For complex numbers, implementations should hash the real and imaginary
271 /// parts sequentially to ensure distinct complex numbers have different hashes.
272 ///
273 /// # Implementation Notes
274 ///
275 /// - For real numbers: Hash the value directly, normalizing signed zeros
276 /// - For complex numbers: Call `compute_hash()` on real part, then imaginary part
277 ///
278 /// # Debug Assertions
279 ///
280 /// Implementations should include a debug assertion that the value is finite,
281 /// as hashing non-finite values may lead to inconsistent results.
282 fn compute_hash<H: Hasher>(&self, state: &mut H);
283}
284
285// =============================================================================
286// Real Trait
287// =============================================================================
288
289/// A trait for raw real scalar types, extending [`RawScalarTrait`] with real-specific operations.
290///
291/// This trait defines the fundamental operations for real number types without
292/// validation or safety checks. Implementations should assume inputs are valid
293/// and focus on computational efficiency.
294///
295/// This trait is implemented by the underlying real number types within a kernel, such as [`f64`]
296/// or [`rug::Float`](https://docs.rs/rug/latest/rug/struct.Float.html).
297/// It builds upon [`RawScalarTrait`] by adding operations that are unique
298/// to real numbers, like `atan2`, and by enforcing an ordering relationship.
299///
300/// ## Hashing Support
301///
302/// Types implementing this trait must provide a `compute_hash` method that:
303/// - Produces consistent hash values for mathematically equal numbers
304/// - Handles floating-point edge cases (like signed zeros) correctly
305/// - Maintains the contract that `a == b` implies `hash(a) == hash(b)`
306///
307/// This enables validated wrapper types to implement [`Hash`](std::hash::Hash) when appropriate
308/// validation policies guarantee finite values.
309///
310/// # Trait Bounds
311///
312/// - `RawScalarTrait<ValidationErrors = ErrorsValidationRawReal<Self>>`: Ensures that the type
313/// is a raw scalar and that its validation error type is the standard one for real numbers.
314/// - [`PartialOrd`]: Requires that the type can be partially ordered, which is fundamental for
315/// real numbers.
316/// - [`PartialOrd<f64>`]: These crucial bounds allow instances of the raw
317/// real type to be directly compared with `f64` constants. This is essential for implementing
318/// domain checks (e.g., `value < 0.0` or `value >= 0.0`) that work across
319/// both [`f64`] and [`rug::Float`](https://docs.rs/rug/latest/rug/struct.Float.html) without extra conversions.
320///
321/// # Associated Types
322///
323/// - `type RawComplex: RawComplexTrait<RawReal = Self>`: This links the raw real type to its
324/// corresponding complex number representation. For example, for [`f64`], this would be
325/// [`num::Complex<f64>`]. This association is vital for operations that can transition
326/// from the real to the complex domain.
327pub trait RawRealTrait:
328 RawScalarTrait<ValidationErrors = ErrorsValidationRawReal<Self>>
329 + PartialOrd
330 + PartialOrd<f64>
331 + Sign
332 + Rounding
333{
334 /// The associated complex type that uses this type as its real part.
335 type RawComplex: RawComplexTrait<RawReal = Self>;
336
337 /// Computes the absolute value of `self` without validation.
338 ///
339 /// **Contract:** The caller must ensure that the input value has already been validated
340 /// and is suitable for the operation.
341 fn unchecked_abs(self) -> Self;
342
343 /// Computes the four-quadrant arctangent of `self` (`y`) and `denominator` (`x`) without validation.
344 ///
345 /// **Contract:** The caller must ensure that `self` and `denominator` are not both zero.
346 fn unchecked_atan2(self, denominator: &Self) -> Self;
347
348 /// Raises `self` to the power of a real `exponent` without validation.
349 ///
350 /// **Contract:** The caller must ensure the inputs are valid for the power function. For
351 /// example, if `self` is negative, the `exponent` should be an integer, but this function
352 /// does not enforce this.
353 fn unchecked_pow_exponent_real(self, exponent: &Self) -> Self;
354
355 /// Computes the Euclidean distance `sqrt(self² + other²)` without validation.
356 fn unchecked_hypot(self, other: &Self) -> Self;
357
358 /// Computes `ln(1 + self)` accurately for small values without validation.
359 fn unchecked_ln_1p(self) -> Self;
360
361 /// Computes `exp(self) - 1` accurately for small values without validation.
362 fn unchecked_exp_m1(self) -> Self;
363
364 /// Multiplies two pairs and adds them, rounding to the nearest.
365 /// `a.unchecked_mul_add_mul_mut(&b, &c, &d)` produces a result like `&a * &b + &c * &d`, but stores the result in `a` using its precision.
366 ///
367 /// **Contract:** The caller must ensure all inputs are valid.
368 fn unchecked_mul_add_mul_mut(&mut self, mul: &Self, add_mul1: &Self, add_mul2: &Self);
369
370 /// Multiplies two pairs and subtracts them, rounding to the nearest.
371 /// `a.unchecked_mul_sub_mul_mut(&b, &c, &d)` produces a result like `&a * &b - &c * &d`, but stores the result in `a` using its precision.
372 ///
373 /// **Contract:** The caller must ensure all inputs are valid.
374 fn unchecked_mul_sub_mul_mut(&mut self, mul: &Self, sub_mul1: &Self, sub_mul2: &Self);
375
376 /// Performs a total ordering comparison.
377 fn raw_total_cmp(&self, other: &Self) -> Ordering;
378
379 /// Clamps the value within the specified bounds.
380 fn raw_clamp(self, min: &Self, max: &Self) -> Self;
381
382 /// Classifies the floating-point value.
383 fn raw_classify(&self) -> FpCategory;
384
385 /// Returns two with the given precision.
386 fn raw_two(precision: u32) -> Self;
387
388 /// Returns 0.5 with the given precision.
389 fn raw_one_div_2(precision: u32) -> Self;
390
391 /// Returns π with the given precision.
392 fn raw_pi(precision: u32) -> Self;
393
394 /// Returns 2π with the given precision.
395 fn raw_two_pi(precision: u32) -> Self;
396
397 /// Returns π/2 with the given precision.
398 fn raw_pi_div_2(precision: u32) -> Self;
399
400 /// Returns the maximum finite value with the given precision.
401 fn raw_max_finite(precision: u32) -> Self;
402
403 /// Returns the minimum finite value with the given precision.
404 fn raw_min_finite(precision: u32) -> Self;
405
406 /// Returns the machine epsilon with the given precision.
407 fn raw_epsilon(precision: u32) -> Self;
408
409 /// Returns ln(2) with the given precision.
410 fn raw_ln_2(precision: u32) -> Self;
411
412 /// Returns ln(10) with the given precision.
413 fn raw_ln_10(precision: u32) -> Self;
414
415 /// Returns log₁₀(2) with the given precision.
416 fn raw_log10_2(precision: u32) -> Self;
417
418 /// Returns log₂(10) with the given precision.
419 fn raw_log2_10(precision: u32) -> Self;
420
421 /// Returns log₂(e) with the given precision.
422 fn raw_log2_e(precision: u32) -> Self;
423
424 /// Returns log₁₀(e) with the given precision.
425 fn raw_log10_e(precision: u32) -> Self;
426
427 /// Returns e (Euler's number) with the given precision.
428 fn raw_e(precision: u32) -> Self;
429
430 /// Tries to create a new raw real value from an `f64`.
431 fn try_new_raw_real_from_f64<RealPolicy: ValidationPolicyReal<Value = Self>>(
432 value: f64,
433 ) -> Result<Self, ErrorsTryFromf64<Self>>;
434
435 /// Returns the precision (in bits) of the raw real type.
436 fn precision(&self) -> u32;
437
438 /// Safely converts the truncated value to `usize`.
439 ///
440 /// Truncates toward zero and validates the result is a valid `usize`.
441 ///
442 /// # Returns
443 ///
444 /// - `Ok(usize)`: If truncated value is in `0..=usize::MAX`
445 /// - `Err(ErrorsRawRealToInteger)`: If value is not finite or out of range
446 /// - `NotFinite`: Value is `NaN` or `±∞`
447 /// - `OutOfRange`: Value is negative or > `usize::MAX`
448 ///
449 /// # Note
450 ///
451 /// The `NotAnInteger` error variant is not returned because truncation
452 /// explicitly handles the fractional part.
453 ///
454 /// # Examples
455 ///
456 /// ```
457 /// # use num_valid::core::traits::raw::RawRealTrait;
458 /// let value = 42.9_f64;
459 /// assert_eq!(value.truncate_to_usize().unwrap(), 42);
460 ///
461 /// let zero = 0.0_f64;
462 /// assert_eq!(zero.truncate_to_usize().unwrap(), 0);
463 /// ```
464 ///
465 /// ## Error cases
466 ///
467 /// ```
468 /// # use num_valid::core::traits::raw::RawRealTrait;
469 /// # use num_valid::core::errors::ErrorsRawRealToInteger;
470 /// // Negative value
471 /// let neg = -10.5_f64;
472 /// assert!(matches!(neg.truncate_to_usize(), Err(ErrorsRawRealToInteger::OutOfRange { .. })));
473 ///
474 /// // Too large for usize
475 /// let large = (usize::MAX as f64) + 100.0;
476 /// assert!(matches!(large.truncate_to_usize(), Err(ErrorsRawRealToInteger::OutOfRange { .. })));
477 ///
478 /// // Not finite
479 /// let nan = f64::NAN;
480 /// assert!(matches!(nan.truncate_to_usize(), Err(ErrorsRawRealToInteger::NotFinite { .. })));
481 /// ```
482 fn truncate_to_usize(self) -> Result<usize, ErrorsRawRealToInteger<Self, usize>>;
483}
484
485// =============================================================================
486// Complex Trait
487// =============================================================================
488
489/// A trait for raw complex scalar types, extending [`RawScalarTrait`].
490///
491/// This trait is implemented by the underlying complex number types within a kernel,
492/// such as [`num::Complex<f64>`]. It builds upon [`RawScalarTrait`] by adding operations
493/// that are unique to complex numbers.
494///
495/// # Trait Bounds
496///
497/// - `RawScalarTrait<...>`: Ensures the type is a raw scalar and fixes its validation
498/// error type to [`ErrorsValidationRawComplex`], which in turn wraps the validation
499/// error of the associated real type. This establishes a consistent error structure.
500/// - [`Conjugate`]: Requires that the complex number can be conjugated.
501///
502/// # Associated Types
503///
504/// - `type RawReal: RawRealTrait<RawComplex = Self>`: This is a critical part of the
505/// design. It links the complex type to its underlying real component type (e.g., [`f64`]
506/// for [`num::Complex<f64>`]). This associated real type must itself implement [`RawRealTrait`],
507/// creating a two-way link between the real and complex raw types.
508///
509/// # Methods
510///
511/// This trait provides methods for accessing components and performing complex-specific
512/// mathematical operations without validation checks.
513pub trait RawComplexTrait:
514 RawScalarTrait<
515 ValidationErrors = ErrorsValidationRawComplex<ErrorsValidationRawReal<Self::RawReal>>,
516 > + Conjugate
517 + for<'a> Mul<&'a Self::RawReal, Output = Self>
518 + for<'a> MulAssign<&'a Self::RawReal>
519{
520 /// The associated real type that makes up the components of this complex type.
521 type RawReal: RawRealTrait<RawComplex = Self>;
522
523 /// Creates a new complex number from real and imaginary parts without validation.
524 fn new_unchecked_raw_complex(real: Self::RawReal, imag: Self::RawReal) -> Self;
525
526 /// Computes the absolute value (modulus or norm) of `self` without validation.
527 ///
528 /// **Contract:** The caller must ensure the input is valid for this operation.
529 fn unchecked_abs(self) -> Self::RawReal;
530
531 /// Returns a reference to the real part of the complex number.
532 fn raw_real_part(&self) -> &Self::RawReal;
533
534 /// Returns a reference to the imaginary part of the complex number.
535 fn raw_imag_part(&self) -> &Self::RawReal;
536
537 /// Returns a mutable reference to the real part of the complex number.
538 fn mut_raw_real_part(&mut self) -> &mut Self::RawReal;
539
540 /// Returns a mutable reference to the imaginary part of the complex number.
541 fn mut_raw_imag_part(&mut self) -> &mut Self::RawReal;
542
543 /// Computes the argument (or phase) of `self` in radians, without validation.
544 ///
545 /// **Contract:** The caller must ensure that `self` is not zero.
546 fn unchecked_arg(self) -> Self::RawReal;
547
548 /// Raises `self` to the power of a real `exponent` without validation.
549 ///
550 /// **Contract:** The caller must ensure the inputs are valid for the power function.
551 fn unchecked_pow_exponent_real(self, exponent: &Self::RawReal) -> Self;
552}