num_valid/kernels/native64.rs
1#![deny(rustdoc::broken_intra_doc_links)]
2
3//! # Native 64-bit Floating-Point Kernel
4//!
5//! This module provides a numerical kernel implementation based on Rust's native
6//! 64-bit floating-point numbers ([`f64`]) and complex numbers ([`num::Complex<f64>`]).
7//! It serves as the standard, high-performance double-precision backend for the
8//! [`num-valid`](crate) library.
9//!
10//! ## Purpose and Role
11//!
12//! The primary role of this module is to act as a **bridge** between the abstract traits
13//! defined by [`num-valid`](crate) (like [`RealScalar`] and [`ComplexScalar`]) and Rust's
14//! concrete, hardware-accelerated numeric types. It adapts [`f64`] and [`Complex<f64>`]
15//! so they can be used seamlessly in generic code written against the library's traits.
16//!
17//! ### `f64` as a `RealScalar`
18//!
19//! By implementing [`RealScalar`] for [`f64`], this module makes Rust's native float
20//! a "first-class citizen" in the [`num-valid`](crate)ecosystem. This implementation
21//! provides concrete logic for all the operations required by [`RealScalar`] and its
22//! super-traits (e.g., [`FpScalar`], [`Rounding`], [`Sign`], [`Constants`]).
23//! Most of these implementations simply delegate to the highly optimized methods
24//! available in Rust's standard library (e.g., `f64::sin`, `f64::sqrt`).
25//!
26//! This allows generic functions bounded by `T: RealScalar` to be instantiated with `f64`,
27//! leveraging direct CPU floating-point support for maximum performance.
28//!
29//! ### `Complex<f64>` as a `ComplexScalar`
30//!
31//! Similarly, this module implements [`ComplexScalar`] for [`num::Complex<f64>`]. This
32//! makes the standard complex number type from the `num` crate compatible with the
33//! [`num-valid`](crate)abstraction for complex numbers. It implements all required traits,
34//! including [`FpScalar`], [`ComplexScalarGetParts`], [`ComplexScalarSetParts`], and
35//! [`ComplexScalarMutateParts`], by delegating to the methods of `num::Complex`.
36//!
37//! This enables generic code written against `T: ComplexScalar` to operate on
38//! `Complex<f64>` values, providing a performant backend for complex arithmetic.
39//!
40//! ## Core Components
41//!
42//! - **[`Native64`]**: A marker struct that implements the [`NumKernel`](crate::NumKernel) trait. It is used
43//! in generic contexts to select this native kernel, specifying [`f64`] as its
44//! [`Real`](crate::NumKernel::Real) type and [`num::Complex<f64>`] as its
45//! [`Complex`](crate::NumKernel::Complex) type.
46//! - **Trait Implementations**: This module is primarily composed of `impl` blocks that
47//! satisfy the contracts of core traits (`FpScalar`, `RealScalar`, `ComplexScalar`,
48//! `Arithmetic`, `MulAddRef`, etc.) for `f64` and `Complex<f64>`.
49//!
50//! ## Validation
51//!
52//! It is crucial to understand that the base types `f64` and `Complex<f64>` do not
53//! inherently enforce properties like finiteness (they can be `NaN` or `Infinity`).
54//!
55//! The [`num-valid`](crate) library introduces validation at the **trait and wrapper level**,
56//! not at the base type level. For instance, [`RealScalar::try_from_f64`] for `f64`
57//! uses a [`StrictFinitePolicy`] to ensure the input is finite before creating an instance.
58//! This design separates the raw, high-performance types from the validated, safer
59//! abstractions built on top of them.
60//!
61//! For scenarios requiring types that are guaranteed to be valid by construction,
62//! consider using the validated wrappers from the [`native64_validated`](crate::kernels::native64_validated) module.
63
64use crate::{
65 Arithmetic, ComplexScalar, Constants, FpScalar, MulAddRef, RealScalar,
66 functions::{
67 Clamp, Classify, ExpM1, Hypot, Ln1p, Rounding, Sign, TotalCmp,
68 complex::{
69 ComplexScalarConstructors, ComplexScalarGetParts, ComplexScalarMutateParts,
70 ComplexScalarSetParts,
71 },
72 },
73 kernels::RawKernel,
74 scalar_kind,
75 validation::{
76 ErrorsTryFromf64, ErrorsValidationRawComplex, ErrorsValidationRawReal,
77 Native64RawRealStrictFinitePolicy, StrictFinitePolicy, validate_complex,
78 },
79};
80use duplicate::duplicate_item;
81use num::Complex;
82use num_traits::MulAddAssign;
83use std::{cmp::Ordering, num::FpCategory};
84use try_create::ValidationPolicy;
85
86//----------------------------------------------------------------------------------------------
87/// Numerical kernel specifier for Rust's native 64-bit floating-point types.
88///
89/// This struct is used as a generic argument or associated type to indicate
90/// that the floating-point values for computations should be [`f64`] for real numbers
91/// and [`num::Complex<f64>`] for complex numbers.
92///
93/// It implements the [`RawKernel`] trait, bridging the native raw types to the
94/// [`num-valid`](crate)'s generic numerical abstraction.
95#[derive(Debug, Clone, PartialEq, PartialOrd)]
96pub struct Native64;
97
98impl RawKernel for Native64 {
99 /// The type for a real scalar value in this numerical kernel.
100 type RawReal = f64;
101
102 /// The type for a complex scalar value in this numerical kernel.
103 type RawComplex = Complex<f64>;
104}
105
106//----------------------------------------------------------------------------------------------
107
108//----------------------------------------------------------------------------------------------
109/*
110/// Implements the [`NumKernel`] trait for [`Native64`].
111impl NumKernel for Native64 {
112 /// The type for a real scalar value in this numerical kernel.
113 type Real = f64;
114
115 /// The type for a complex scalar value in this numerical kernel.
116 type Complex = Complex<f64>;
117}
118*/
119//----------------------------------------------------------------------------------------------
120
121//----------------------------------------------------------------------------------------------
122/// Marker implementation of [`Arithmetic`] for [`f64`].
123///
124/// This signifies that [`f64`] supports the standard arithmetic operations
125/// (addition, subtraction, multiplication, division, remainder, negation)
126/// as defined by the traits aggregated within [`Arithmetic`].
127impl Arithmetic for f64 {}
128
129/// Marker implementation of [`Arithmetic`] for [`num::Complex<f64>`].
130///
131/// This signifies that [`Complex<f64>`] supports the standard arithmetic operations
132/// (addition, subtraction, multiplication, division, negation)
133/// as defined by the traits aggregated within [`Arithmetic`].
134impl Arithmetic for Complex<f64> {}
135//----------------------------------------------------------------------------------------------
136
137//----------------------------------------------------------------------------------------------
138/// Implements the [`FpScalar`] trait for [`f64`].
139///
140/// This trait provides a common interface for floating-point scalar types within
141/// the [`num-valid`](crate) ecosystem.
142impl FpScalar for f64 {
143 type Kind = scalar_kind::Real;
144
145 /// Defines the associated real type, which is [`f64`] itself.
146 type RealType = f64;
147
148 /// Returns a reference to the underlying raw real value.
149 fn as_raw_ref(&self) -> &Self::InnerType {
150 self
151 }
152}
153
154/// Implements the [`FpScalar`] trait for [`num::Complex<f64>`].
155///
156/// This trait provides a common interface for floating-point scalar types within
157/// the [`num-valid`](crate) ecosystem.
158impl FpScalar for Complex<f64> {
159 type Kind = scalar_kind::Complex;
160
161 /// Defines the associated real type for complex numbers, which is [`f64`].
162 type RealType = f64;
163
164 /// Returns a reference to the underlying raw complex value.
165 fn as_raw_ref(&self) -> &Self::InnerType {
166 self
167 }
168}
169//----------------------------------------------------------------------------------------------
170
171//----------------------------------------------------------------------------------------------
172impl Sign for f64 {
173 /// Returns a number with the magnitude of `self` and the sign of `sign`.
174 #[inline(always)]
175 fn kernel_copysign(self, sign: &Self) -> Self {
176 self.copysign(*sign)
177 }
178
179 /// Returns `true` if the value is negative, −0 or NaN with a negative sign.
180 #[inline(always)]
181 fn kernel_is_sign_negative(&self) -> bool {
182 self.is_sign_negative()
183 }
184
185 /// Returns `true` if the value is positive, +0 or NaN with a positive sign.
186 #[inline(always)]
187 fn kernel_is_sign_positive(&self) -> bool {
188 self.is_sign_positive()
189 }
190
191 /// Computes the signum.
192 ///
193 /// The returned value is:
194 /// - `1.0` if the value is positive, +0.0 or +∞
195 /// - `−1.0` if the value is negative, −0.0 or −∞
196 /// - `NaN` if the value is NaN
197 #[inline(always)]
198 fn kernel_signum(self) -> Self {
199 self.signum()
200 }
201}
202
203impl Rounding for f64 {
204 /// Returns the smallest integer greater than or equal to `self`.
205 #[inline(always)]
206 fn kernel_ceil(self) -> Self {
207 self.ceil()
208 }
209
210 /// Returns the largest integer smaller than or equal to `self`.
211 #[inline(always)]
212 fn kernel_floor(self) -> Self {
213 self.floor()
214 }
215
216 /// Returns the fractional part of `self`.
217 #[inline(always)]
218 fn kernel_fract(self) -> Self {
219 self.fract()
220 }
221
222 /// Rounds `self` to the nearest integer, rounding half-way cases away from zero.
223 #[inline(always)]
224 fn kernel_round(self) -> Self {
225 self.round()
226 }
227
228 /// Returns the nearest integer to a number. Rounds half-way cases to the number with an even least significant digit.
229 ///
230 /// This function always returns the precise result.
231 ///
232 /// # Examples
233 /// ```
234 /// use num_valid::{RealScalar, functions::Rounding};
235 ///
236 /// let f = 3.3_f64;
237 /// let g = -3.3_f64;
238 /// let h = 3.5_f64;
239 /// let i = 4.5_f64;
240 ///
241 /// assert_eq!(f.kernel_round_ties_even(), 3.0);
242 /// assert_eq!(g.kernel_round_ties_even(), -3.0);
243 /// assert_eq!(h.kernel_round_ties_even(), 4.0);
244 /// assert_eq!(i.kernel_round_ties_even(), 4.0);
245 /// ```
246 #[inline(always)]
247 fn kernel_round_ties_even(self) -> Self {
248 self.round_ties_even()
249 }
250
251 /// Returns the integer part of `self`. This means that non-integer numbers are always truncated towards zero.
252 ///
253 /// # Examples
254 /// ```
255 /// use num_valid::{RealScalar, functions::Rounding};
256 ///
257 /// let f = 3.7_f64;
258 /// let g = 3.0_f64;
259 /// let h = -3.7_f64;
260 ///
261 /// assert_eq!(f.kernel_trunc(), 3.0);
262 /// assert_eq!(g.kernel_trunc(), 3.0);
263 /// assert_eq!(h.kernel_trunc(), -3.0);
264 /// ```
265 #[inline(always)]
266 fn kernel_trunc(self) -> Self {
267 self.trunc()
268 }
269}
270
271impl Constants for f64 {
272 /// [Machine epsilon] value for `f64`.
273 ///
274 /// This is the difference between `1.0` and the next larger representable number.
275 ///
276 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
277 #[inline(always)]
278 fn epsilon() -> Self {
279 f64::EPSILON
280 }
281
282 /// Build and return the (floating point) value -1. represented by a `f64`.
283 #[inline(always)]
284 fn negative_one() -> Self {
285 -1.
286 }
287
288 /// Build and return the (floating point) value 0.5 represented by the proper type.
289 #[inline(always)]
290 fn one_div_2() -> Self {
291 0.5
292 }
293
294 /// Build and return the (floating point) value `2.0`.
295 #[inline(always)]
296 fn two() -> Self {
297 2.
298 }
299
300 /// Build and return the maximum finite value allowed by the current floating point representation.
301 #[inline(always)]
302 fn max_finite() -> Self {
303 f64::MAX
304 }
305
306 /// Build and return the minimum finite (i.e., the most negative) value allowed by the current floating point representation.
307 #[inline(always)]
308 fn min_finite() -> Self {
309 f64::MIN
310 }
311
312 /// Build and return the (floating point) value `π`.
313 #[inline(always)]
314 fn pi() -> Self {
315 std::f64::consts::PI
316 }
317
318 /// Build and return the (floating point) value `2 π`.
319 #[inline(always)]
320 fn two_pi() -> Self {
321 std::f64::consts::PI * 2.
322 }
323
324 /// Build and return the (floating point) value `π/2`.
325 #[inline(always)]
326 fn pi_div_2() -> Self {
327 std::f64::consts::FRAC_PI_2
328 }
329
330 /// Build and return the natural logarithm of 2, i.e. the (floating point) value `ln(2)`.
331 #[inline(always)]
332 fn ln_2() -> Self {
333 std::f64::consts::LN_2
334 }
335
336 /// Build and return the natural logarithm of 10, i.e. the (floating point) value `ln(10)`.
337 #[inline(always)]
338 fn ln_10() -> Self {
339 std::f64::consts::LN_10
340 }
341
342 /// Build and return the base-10 logarithm of 2, i.e. the (floating point) value `Log_10(2)`.
343 #[inline(always)]
344 fn log10_2() -> Self {
345 std::f64::consts::LOG10_2
346 }
347
348 /// Build and return the base-2 logarithm of 10, i.e. the (floating point) value `Log_2(10)`.
349 #[inline(always)]
350 fn log2_10() -> Self {
351 std::f64::consts::LOG2_10
352 }
353
354 /// Build and return the base-2 logarithm of `e`, i.e. the (floating point) value `Log_2(e)`.
355 #[inline(always)]
356 fn log2_e() -> Self {
357 std::f64::consts::LOG2_E
358 }
359
360 /// Build and return the base-10 logarithm of `e`, i.e. the (floating point) value `Log_10(e)`.
361 #[inline(always)]
362 fn log10_e() -> Self {
363 std::f64::consts::LOG10_E
364 }
365
366 /// Build and return the (floating point) value `e` represented by the proper type.
367 #[inline(always)]
368 fn e() -> Self {
369 std::f64::consts::E
370 }
371}
372
373impl Clamp for f64 {
374 /// Clamp the value within the specified bounds.
375 ///
376 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
377 /// Otherwise this returns `self`.
378 ///
379 /// Note that this function returns `NaN` if the initial value was `NaN` as well.
380 ///
381 /// # Panics
382 /// Panics if `min` > `max`, `min` is `NaN`, or `max` is `NaN`.
383 /// ```
384 /// use num_valid::functions::Clamp;
385 ///
386 /// assert!(Clamp::clamp(-3.0f64, &-2.0, &1.0) == -2.0);
387 /// assert!(Clamp::clamp(0.0f64, &-2.0, &1.0) == 0.0);
388 /// assert!(Clamp::clamp(2.0f64, &-2.0, &1.0) == 1.0);
389 /// assert!(Clamp::clamp(f64::NAN, &-2.0, &1.0).is_nan());
390 /// ```
391 #[inline(always)]
392 fn clamp(self, min: &Self, max: &Self) -> Self {
393 f64::clamp(self, *min, *max)
394 }
395}
396
397impl Classify for f64 {
398 /// Returns the floating point category of the number. If only one property is going to be tested,
399 /// it is generally faster to use the specific predicate instead.
400 /// ```
401 /// use num_valid::functions::Classify;
402 /// use std::num::FpCategory;
403 ///
404 /// let num = 12.4_f64;
405 /// let inf = f64::INFINITY;
406 ///
407 /// assert_eq!(Classify::classify(&num), FpCategory::Normal);
408 /// assert_eq!(Classify::classify(&inf), FpCategory::Infinite);
409 /// ```
410 #[inline(always)]
411 fn classify(&self) -> FpCategory {
412 f64::classify(*self)
413 }
414}
415
416impl ExpM1 for f64 {
417 /// Returns `e^(self) - 1`` in a way that is accurate even if the number is close to zero.
418 #[inline(always)]
419 fn exp_m1(self) -> Self {
420 f64::exp_m1(self)
421 }
422}
423
424impl Hypot for f64 {
425 /// Compute the distance between the origin and a point (`self`, `other`) on the Euclidean plane.
426 /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `self.abs()` and `other.abs()`.
427 #[inline(always)]
428 fn hypot(self, other: &Self) -> Self {
429 f64::hypot(self, *other)
430 }
431}
432
433impl Ln1p for f64 {
434 /// Returns `ln(1. + self)` (natural logarithm) more accurately than if the operations were performed separately.
435 #[inline(always)]
436 fn ln_1p(self) -> Self {
437 f64::ln_1p(self)
438 }
439}
440
441impl TotalCmp for f64 {
442 #[inline(always)]
443 fn total_cmp(&self, other: &Self) -> Ordering {
444 self.total_cmp(other)
445 }
446}
447
448impl RealScalar for f64 {
449 type RawReal = f64;
450
451 /// Multiplies two products and adds them in one fused operation, rounding to the nearest with only one rounding error.
452 /// `a.kernel_mul_add_mul_mut(&b, &c, &d)` produces a result like `&a * &b + &c * &d`, but stores the result in `a` using its precision.
453 #[inline(always)]
454 fn kernel_mul_add_mul_mut(&mut self, mul: &Self, add_mul1: &Self, add_mul2: &Self) {
455 self.mul_add_assign(*mul, add_mul1 * add_mul2);
456 }
457
458 /// Multiplies two products and subtracts them in one fused operation, rounding to the nearest with only one rounding error.
459 /// `a.kernel_mul_sub_mul_mut(&b, &c, &d)` produces a result like `&a * &b - &c * &d`, but stores the result in `a` using its precision.
460 #[inline(always)]
461 fn kernel_mul_sub_mul_mut(&mut self, mul: &Self, sub_mul1: &Self, sub_mul2: &Self) {
462 self.mul_add_assign(*mul, -sub_mul1 * sub_mul2);
463 }
464
465 /// Try to build a [`f64`] instance from a [`f64`].
466 /// The returned value is `Ok` if the input `value` is finite,
467 /// otherwise the returned value is `ErrorsTryFromf64`.
468 #[inline(always)]
469 fn try_from_f64(value: f64) -> Result<Self, ErrorsTryFromf64<f64>> {
470 StrictFinitePolicy::<f64, 53>::validate(value)
471 .map_err(|e| ErrorsTryFromf64::Output { source: e })
472 }
473}
474
475impl ComplexScalarConstructors for Complex<f64> {
476 type RawComplex = Complex<f64>;
477
478 fn try_new_complex(
479 real_part: f64,
480 imag_part: f64,
481 ) -> Result<Self, ErrorsValidationRawComplex<ErrorsValidationRawReal<f64>>> {
482 validate_complex::<Native64RawRealStrictFinitePolicy>(&real_part, &imag_part)
483 .map(|_| Complex::new(real_part, imag_part))
484 }
485}
486
487/// Implement the [`ComplexScalarGetParts`] trait for the `Complex<f64>` type.
488impl ComplexScalarGetParts for Complex<f64> {
489 /// Get the real part of the complex number.
490 #[inline(always)]
491 fn real_part(&self) -> f64 {
492 self.re
493 }
494
495 /// Get the imaginary part of the complex number.
496 #[inline(always)]
497 fn imag_part(&self) -> f64 {
498 self.im
499 }
500
501 /// Returns a reference to the raw real part of the complex number.
502 #[inline(always)]
503 fn raw_real_part(&self) -> &f64 {
504 &self.re
505 }
506
507 /// Returns a reference to the raw imaginary part of the complex number.
508 #[inline(always)]
509 fn raw_imag_part(&self) -> &f64 {
510 &self.im
511 }
512}
513
514/// Implement the [`ComplexScalarSetParts`] trait for the `Complex<f64>` type.
515impl ComplexScalarSetParts for Complex<f64> {
516 /// Set the value of the real part.
517 ///
518 /// # Panics
519 /// In **debug builds**, this will panic if `real_part` is not finite.
520 /// This check is disabled in release builds for performance.
521 #[inline(always)]
522 fn set_real_part(&mut self, real_part: f64) {
523 debug_assert!(
524 real_part.is_finite(),
525 "The real part is not finite (i.e. is infinite or NaN)."
526 );
527 self.re = real_part;
528 }
529
530 /// Set the value of the imaginary part.
531 ///
532 /// # Panics
533 /// In **debug builds**, this will panic if `imag_part` is not finite.
534 /// This check is disabled in release builds for performance.
535 #[inline(always)]
536 fn set_imaginary_part(&mut self, imag_part: f64) {
537 debug_assert!(
538 imag_part.is_finite(),
539 "The imaginary part is not finite (i.e. is infinite or NaN)."
540 );
541 self.im = imag_part;
542 }
543}
544
545/// Implement the [`ComplexScalarMutateParts`] trait for the `Complex<f64>` type.
546impl ComplexScalarMutateParts for Complex<f64> {
547 /// Add the value of the the real coefficient `c` to real part of `self`.
548 ///
549 /// # Panics
550 /// In **debug builds**, this will panic if the real part of `self` is not finite after the addition.
551 /// This check is disabled in release builds for performance.
552 #[inline(always)]
553 fn add_to_real_part(&mut self, c: &f64) {
554 self.re += c;
555
556 debug_assert!(
557 self.re.is_finite(),
558 "The real part is not finite (i.e. is infinite or NaN)."
559 );
560 }
561
562 /// Add the value of the the real coefficient `c` to imaginary part of `self`.
563 ///
564 /// # Panics
565 /// In **debug builds**, this will panic if the imaginary part of `self` is not finite after the addition.
566 /// This check is disabled in release builds for performance.
567 #[inline(always)]
568 fn add_to_imaginary_part(&mut self, c: &f64) {
569 self.im += c;
570
571 debug_assert!(
572 self.im.is_finite(),
573 "The imaginary part is not finite (i.e. is infinite or NaN)."
574 );
575 }
576
577 /// Multiply the value of the real part by the real coefficient `c`.
578 ///
579 /// # Panics
580 /// In **debug builds**, this will panic if the real part of `self` is not finite after the multiplication.
581 /// This check is disabled in release builds for performance.
582 #[inline(always)]
583 fn multiply_real_part(&mut self, c: &f64) {
584 self.re *= c;
585
586 debug_assert!(
587 self.re.is_finite(),
588 "The real part is not finite (i.e. is infinite or NaN)."
589 );
590 }
591
592 /// Multiply the value of the imaginary part by the real coefficient `c`.
593 ///
594 /// # Panics
595 /// In **debug builds**, this will panic if the imaginary part of `self` is not finite after the multiplication.
596 /// This check is disabled in release builds for performance.
597 #[inline(always)]
598 fn multiply_imaginary_part(&mut self, c: &f64) {
599 self.im *= c;
600
601 debug_assert!(
602 self.im.is_finite(),
603 "The imaginary part is not finite (i.e. is infinite or NaN)."
604 );
605 }
606}
607
608/// Implement the [`ComplexScalar`] trait for the `Complex<f64>` type.
609impl ComplexScalar for Complex<f64> {
610 fn into_parts(self) -> (Self::RealType, Self::RealType) {
611 (self.re, self.im)
612 }
613}
614
615//----------------------------------------------------------------------------------------------
616
617//----------------------------------------------------------------------------------------------
618#[duplicate_item(
619 T trait_comment;
620 [f64] ["Implementation of the [`MulAddRef`] trait for `f64`."];
621 [Complex<f64>] ["Implementation of the [`MulAddRef`] trait for `Complex<f64>`."];
622)]
623#[doc = trait_comment]
624impl MulAddRef for T {
625 /// Multiplies and adds in one fused operation, rounding to the nearest with only one rounding error.
626 ///
627 /// `a.mul_add(b, c)` produces a result like `a * &b + &c`.
628 #[inline(always)]
629 fn mul_add_ref(self, b: &Self, c: &Self) -> Self {
630 <Self as num::traits::MulAdd>::mul_add(self, *b, *c)
631 }
632}
633//----------------------------------------------------------------------------------------------
634
635#[cfg(test)]
636mod tests {
637 use crate::{
638 functions::TotalCmp,
639 validation::{ErrorsValidationRawComplex, ErrorsValidationRawReal},
640 };
641
642 mod real {
643 use super::*;
644 use crate::Constants;
645
646 #[test]
647 fn test_constants() {
648 assert_eq!(<f64 as Constants>::epsilon(), f64::EPSILON);
649 assert_eq!(<f64 as Constants>::negative_one(), -1.0);
650 assert_eq!(<f64 as Constants>::one_div_2(), 0.5);
651 assert_eq!(<f64 as Constants>::two(), 2.0);
652 assert_eq!(<f64 as Constants>::max_finite(), f64::MAX);
653 assert_eq!(<f64 as Constants>::min_finite(), f64::MIN);
654 assert_eq!(<f64 as Constants>::pi(), std::f64::consts::PI);
655 assert_eq!(<f64 as Constants>::two_pi(), std::f64::consts::PI * 2.0);
656 assert_eq!(<f64 as Constants>::pi_div_2(), std::f64::consts::FRAC_PI_2);
657 assert_eq!(<f64 as Constants>::ln_2(), std::f64::consts::LN_2);
658 assert_eq!(<f64 as Constants>::ln_10(), std::f64::consts::LN_10);
659 assert_eq!(<f64 as Constants>::log10_2(), std::f64::consts::LOG10_2);
660 assert_eq!(<f64 as Constants>::log2_10(), std::f64::consts::LOG2_10);
661 assert_eq!(<f64 as Constants>::log2_e(), std::f64::consts::LOG2_E);
662 assert_eq!(<f64 as Constants>::log10_e(), std::f64::consts::LOG10_E);
663 assert_eq!(<f64 as Constants>::e(), std::f64::consts::E);
664 }
665
666 #[test]
667 #[allow(clippy::op_ref)]
668 fn multiply_ref() {
669 let a = 2.0f64;
670 let b = 3.0f64;
671 let result = a * &b;
672 assert_eq!(result, 6.0);
673 }
674
675 #[test]
676 fn total_cmp() {
677 let a = 2.0f64;
678 let b = 3.0f64;
679 assert_eq!(
680 <f64 as TotalCmp>::total_cmp(&a, &b),
681 std::cmp::Ordering::Less
682 );
683 assert_eq!(
684 <f64 as TotalCmp>::total_cmp(&b, &a),
685 std::cmp::Ordering::Greater
686 );
687 assert_eq!(
688 <f64 as TotalCmp>::total_cmp(&a, &a),
689 std::cmp::Ordering::Equal
690 );
691 }
692
693 mod from_f64 {
694 use crate::{RealNative64StrictFinite, RealScalar};
695
696 #[test]
697 fn test_from_f64_valid_constants() {
698 // Test with mathematical constants (known valid values)
699 let pi = RealNative64StrictFinite::from_f64(std::f64::consts::PI);
700 assert_eq!(pi.as_ref(), &std::f64::consts::PI);
701
702 let e = RealNative64StrictFinite::from_f64(std::f64::consts::E);
703 assert_eq!(e.as_ref(), &std::f64::consts::E);
704
705 let sqrt2 = RealNative64StrictFinite::from_f64(std::f64::consts::SQRT_2);
706 assert_eq!(sqrt2.as_ref(), &std::f64::consts::SQRT_2);
707 }
708
709 #[test]
710 fn test_from_f64_valid_values() {
711 // Test with regular valid values
712 let x = RealNative64StrictFinite::from_f64(42.0);
713 assert_eq!(x.as_ref(), &42.0);
714
715 let y = RealNative64StrictFinite::from_f64(-3.0);
716 assert_eq!(y.as_ref(), &-3.0);
717
718 let z = RealNative64StrictFinite::from_f64(0.0);
719 assert_eq!(z.as_ref(), &0.0);
720 }
721
722 #[test]
723 #[should_panic(expected = "RealScalar::from_f64() failed")]
724 fn test_from_f64_nan_panics() {
725 let _ = RealNative64StrictFinite::from_f64(f64::NAN);
726 }
727
728 #[test]
729 #[should_panic(expected = "RealScalar::from_f64() failed")]
730 fn test_from_f64_infinity_panics() {
731 let _ = RealNative64StrictFinite::from_f64(f64::INFINITY);
732 }
733
734 #[test]
735 #[should_panic(expected = "RealScalar::from_f64() failed")]
736 fn test_from_f64_neg_infinity_panics() {
737 let _ = RealNative64StrictFinite::from_f64(f64::NEG_INFINITY);
738 }
739
740 #[test]
741 #[should_panic(expected = "RealScalar::from_f64() failed")]
742 fn test_from_f64_subnormal_panics() {
743 // Test with a subnormal value (very small but non-zero)
744 let _ = RealNative64StrictFinite::from_f64(f64::MIN_POSITIVE / 2.0);
745 }
746
747 #[test]
748 fn test_try_from_f64_error_handling() {
749 // Verify try_from_f64 still works for error handling
750 assert!(RealNative64StrictFinite::try_from_f64(f64::NAN).is_err());
751 assert!(RealNative64StrictFinite::try_from_f64(f64::INFINITY).is_err());
752 assert!(RealNative64StrictFinite::try_from_f64(f64::NEG_INFINITY).is_err());
753
754 // Valid values work with try_from_f64
755 assert!(RealNative64StrictFinite::try_from_f64(3.0).is_ok());
756 assert!(RealNative64StrictFinite::try_from_f64(0.0).is_ok());
757 }
758 }
759
760 mod truncate_to_usize {
761 use crate::{kernels::RawRealTrait, validation::ErrorsRawRealToInteger};
762
763 #[test]
764 fn test_f64_truncate_to_usize_valid() {
765 assert_eq!(42.0_f64.truncate_to_usize().unwrap(), 42);
766 assert_eq!(42.9_f64.truncate_to_usize().unwrap(), 42);
767 assert_eq!(0.0_f64.truncate_to_usize().unwrap(), 0);
768 }
769
770 #[test]
771 fn test_f64_truncate_to_usize_not_finite() {
772 assert!(matches!(
773 f64::NAN.truncate_to_usize(),
774 Err(ErrorsRawRealToInteger::NotFinite { .. })
775 ));
776 assert!(matches!(
777 f64::INFINITY.truncate_to_usize(),
778 Err(ErrorsRawRealToInteger::NotFinite { .. })
779 ));
780 assert!(matches!(
781 f64::NEG_INFINITY.truncate_to_usize(),
782 Err(ErrorsRawRealToInteger::NotFinite { .. })
783 ));
784 }
785
786 #[test]
787 fn test_f64_truncate_to_usize_out_of_range() {
788 // Negative value
789 assert!(matches!(
790 (-1.0_f64).truncate_to_usize(),
791 Err(ErrorsRawRealToInteger::OutOfRange { .. })
792 ));
793 // Value too large
794 assert!(matches!(
795 ((usize::MAX as f64) + 1.0).truncate_to_usize(),
796 Err(ErrorsRawRealToInteger::OutOfRange { .. })
797 ));
798
799 // this is exactly usize::MAX, which is out of range because f64 cannot represent all integers above 2^53 exactly
800 assert!(matches!(
801 (usize::MAX as f64).truncate_to_usize(),
802 Err(ErrorsRawRealToInteger::OutOfRange { .. })
803 ));
804 }
805 }
806 }
807
808 mod complex {
809 use super::*;
810 use crate::{
811 ComplexScalarConstructors, ComplexScalarGetParts, ComplexScalarMutateParts,
812 ComplexScalarSetParts,
813 };
814 use num::{Complex, Zero};
815
816 #[test]
817 fn real_part() {
818 let c1 = Complex::new(1.23, 4.56);
819 assert_eq!(c1.real_part(), 1.23);
820
821 let c2 = Complex::new(-7.89, 0.12);
822 assert_eq!(c2.real_part(), -7.89);
823
824 let c3 = Complex::new(0.0, 10.0);
825 assert_eq!(c3.real_part(), 0.0);
826
827 let c_nan_re = Complex::new(f64::NAN, 5.0);
828 assert!(c_nan_re.real_part().is_nan());
829
830 let c_inf_re = Complex::new(f64::INFINITY, 5.0);
831 assert!(c_inf_re.real_part().is_infinite());
832 assert!(c_inf_re.real_part().is_sign_positive());
833
834 let c_neg_inf_re = Complex::new(f64::NEG_INFINITY, 5.0);
835 assert!(c_neg_inf_re.real_part().is_infinite());
836 assert!(c_neg_inf_re.real_part().is_sign_negative());
837 }
838
839 #[test]
840 fn imag_part() {
841 let c1 = Complex::new(1.23, 4.56);
842 assert_eq!(c1.imag_part(), 4.56);
843
844 let c2 = Complex::new(7.89, -0.12);
845 assert_eq!(c2.imag_part(), -0.12);
846
847 let c3 = Complex::new(10.0, 0.0);
848 assert_eq!(c3.imag_part(), 0.0);
849
850 let c_nan_im = Complex::new(5.0, f64::NAN);
851 assert!(c_nan_im.imag_part().is_nan());
852
853 let c_inf_im = Complex::new(5.0, f64::INFINITY);
854 assert!(c_inf_im.imag_part().is_infinite());
855 assert!(c_inf_im.imag_part().is_sign_positive());
856
857 let c_neg_inf_im = Complex::new(5.0, f64::NEG_INFINITY);
858 assert!(c_neg_inf_im.imag_part().is_infinite());
859 assert!(c_neg_inf_im.imag_part().is_sign_negative());
860 }
861
862 #[test]
863 fn try_new_complex() {
864 let r1 = 1.23;
865 let i1 = 4.56;
866 let c1 = Complex::<f64>::try_new_complex(r1, i1).unwrap();
867 assert_eq!(c1.re, r1);
868 assert_eq!(c1.im, i1);
869 assert_eq!(c1.real_part(), r1);
870 assert_eq!(c1.imag_part(), i1);
871
872 let r2 = -7.89;
873 let i2 = -0.12;
874 let c2 = Complex::<f64>::try_new_complex(r2, i2).unwrap();
875 assert_eq!(c2.re, r2);
876 assert_eq!(c2.im, i2);
877 assert_eq!(c2.real_part(), r2);
878 assert_eq!(c2.imag_part(), i2);
879
880 let r3 = 0.0;
881 let i3 = 0.0;
882 let c3 = Complex::<f64>::try_new_complex(r3, i3).unwrap();
883 assert_eq!(c3.re, r3);
884 assert_eq!(c3.im, i3);
885 assert!(c3.is_zero()); // Assuming Zero trait is available and implemented
886
887 let c_nan_re = Complex::<f64>::try_new_complex(f64::NAN, 5.0).unwrap_err();
888 assert!(matches!(
889 c_nan_re,
890 ErrorsValidationRawComplex::InvalidRealPart { .. }
891 ));
892
893 let c_inf_im = Complex::<f64>::try_new_complex(10.0, f64::INFINITY).unwrap_err();
894 assert!(matches!(
895 c_inf_im,
896 ErrorsValidationRawComplex::InvalidImaginaryPart { .. }
897 ));
898
899 let c_nan_re_inf_im =
900 Complex::<f64>::try_new_complex(f64::NAN, f64::INFINITY).unwrap_err();
901 assert!(matches!(
902 c_nan_re_inf_im,
903 ErrorsValidationRawComplex::InvalidBothParts { .. }
904 ));
905 }
906
907 #[test]
908 fn try_new_pure_real() {
909 let r1 = 1.23;
910 let c1 = Complex::<f64>::try_new_pure_real(r1).unwrap();
911 assert_eq!(c1.re, r1);
912 assert_eq!(c1.im, 0.0);
913
914 let c_nan = Complex::<f64>::try_new_pure_real(f64::NAN).unwrap_err();
915 assert!(matches!(
916 c_nan,
917 ErrorsValidationRawComplex::InvalidRealPart {
918 source: ErrorsValidationRawReal::IsNaN { .. }
919 }
920 ));
921 }
922
923 #[test]
924 fn try_new_pure_imaginary() {
925 let i1 = 1.23;
926 let c1 = Complex::<f64>::try_new_pure_imaginary(i1).unwrap();
927 assert_eq!(c1.re, 0.0);
928 assert_eq!(c1.im, i1);
929
930 let c_nan = Complex::<f64>::try_new_pure_imaginary(f64::NAN).unwrap_err();
931 assert!(matches!(
932 c_nan,
933 ErrorsValidationRawComplex::InvalidImaginaryPart {
934 source: ErrorsValidationRawReal::IsNaN { .. }
935 }
936 ));
937 }
938
939 #[test]
940 fn add_to_real_part() {
941 let mut c = Complex::new(1.0, 2.0);
942 c.add_to_real_part(&3.0);
943 assert_eq!(c.re, 4.0);
944 assert_eq!(c.im, 2.0);
945
946 c.add_to_real_part(&-5.0);
947 assert_eq!(c.re, -1.0);
948 assert_eq!(c.im, 2.0);
949 }
950
951 #[cfg(debug_assertions)]
952 #[test]
953 #[should_panic(expected = "The real part is not finite (i.e. is infinite or NaN).")]
954 fn add_to_real_part_nan() {
955 let mut c = Complex::new(1.0, 2.0);
956 c.add_to_real_part(&f64::NAN);
957 }
958
959 #[test]
960 fn add_to_imaginary_part() {
961 let mut c = Complex::new(1.0, 2.0);
962 c.add_to_imaginary_part(&3.0);
963 assert_eq!(c.re, 1.0);
964 assert_eq!(c.im, 5.0);
965
966 c.add_to_imaginary_part(&-4.0);
967 assert_eq!(c.re, 1.0);
968 assert_eq!(c.im, 1.0);
969 }
970
971 #[cfg(debug_assertions)]
972 #[test]
973 #[should_panic(expected = "The imaginary part is not finite (i.e. is infinite or NaN).")]
974 fn add_to_imaginary_part_nan() {
975 let mut c = Complex::new(1.0, 2.0);
976 c.add_to_imaginary_part(&f64::NAN);
977 }
978
979 #[test]
980 fn multiply_real_part() {
981 let mut c = Complex::new(1.0, 2.0);
982 c.multiply_real_part(&3.0);
983 assert_eq!(c.re, 3.0);
984 assert_eq!(c.im, 2.0);
985
986 c.multiply_real_part(&-2.0);
987 assert_eq!(c.re, -6.0);
988 assert_eq!(c.im, 2.0);
989 }
990
991 #[cfg(debug_assertions)]
992 #[test]
993 #[should_panic(expected = "The real part is not finite (i.e. is infinite or NaN).")]
994 fn multiply_real_part_nan() {
995 let mut c = Complex::new(1.0, 2.0);
996 c.multiply_real_part(&f64::NAN);
997 }
998
999 #[test]
1000 fn multiply_imaginary_part() {
1001 let mut c = Complex::new(1.0, 2.0);
1002 c.multiply_imaginary_part(&3.0);
1003 assert_eq!(c.re, 1.0);
1004 assert_eq!(c.im, 6.0);
1005
1006 c.multiply_imaginary_part(&-0.5);
1007 assert_eq!(c.re, 1.0);
1008 assert_eq!(c.im, -3.0);
1009 }
1010
1011 #[cfg(debug_assertions)]
1012 #[test]
1013 #[should_panic(expected = "The imaginary part is not finite (i.e. is infinite or NaN).")]
1014 fn multiply_imaginary_part_nan() {
1015 let mut c = Complex::new(1.0, 2.0);
1016 c.multiply_imaginary_part(&f64::NAN);
1017 }
1018
1019 #[test]
1020 fn set_real_part() {
1021 let mut c = Complex::new(1.0, 2.0);
1022 c.set_real_part(3.0);
1023 assert_eq!(c.re, 3.0);
1024 assert_eq!(c.im, 2.0);
1025
1026 c.set_real_part(-4.0);
1027 assert_eq!(c.re, -4.0);
1028 assert_eq!(c.im, 2.0);
1029 }
1030
1031 #[cfg(debug_assertions)]
1032 #[test]
1033 #[should_panic(expected = "The real part is not finite (i.e. is infinite or NaN).")]
1034 fn set_real_part_nan() {
1035 let mut c = Complex::new(1.0, 2.0);
1036 c.set_real_part(f64::NAN);
1037 }
1038
1039 #[test]
1040 fn set_imaginary_part() {
1041 let mut c = Complex::new(1.0, 2.0);
1042 c.set_imaginary_part(3.0);
1043 assert_eq!(c.re, 1.0);
1044 assert_eq!(c.im, 3.0);
1045
1046 c.set_imaginary_part(-4.0);
1047 assert_eq!(c.re, 1.0);
1048 assert_eq!(c.im, -4.0);
1049 }
1050
1051 #[cfg(debug_assertions)]
1052 #[test]
1053 #[should_panic(expected = "The imaginary part is not finite (i.e. is infinite or NaN).")]
1054 fn set_imaginary_part_nan() {
1055 let mut c = Complex::new(1.0, 2.0);
1056 c.set_imaginary_part(f64::NAN);
1057 }
1058
1059 #[test]
1060 #[allow(clippy::op_ref)]
1061 fn multiply_ref() {
1062 let c1 = Complex::new(1.0, 2.0);
1063 let c2 = Complex::new(3.0, 4.0);
1064 let result = c1 * &c2;
1065 assert_eq!(result, Complex::new(-5.0, 10.0)); // (1*3 - 2*4) + (1*4 + 2*3)i
1066 }
1067 }
1068}