num_primitive/float.rs
1use crate::{PrimitiveNumber, PrimitiveNumberRef, PrimitiveUnsigned};
2
3use core::cmp::Ordering;
4use core::f32::consts as f32_consts;
5use core::f64::consts as f64_consts;
6use core::num::FpCategory;
7
8struct SealedToken;
9
10/// Trait for all primitive [floating-point types], including the supertrait [`PrimitiveNumber`].
11///
12/// This encapsulates trait implementations, constants, and inherent methods that are common among
13/// the primitive floating-point types, [`f32`] and [`f64`]. Unstable types [`f16`] and [`f128`]
14/// will be added once they are stabilized.
15///
16/// See the corresponding items on the individual types for more documentation and examples.
17///
18/// This trait is sealed with a private trait to prevent downstream implementations, so we may
19/// continue to expand along with the standard library without worrying about breaking changes for
20/// implementors.
21///
22/// [floating-point types]: https://doc.rust-lang.org/reference/types/numeric.html#r-type.numeric.float
23///
24/// # Examples
25///
26/// This example requires the `std` feature for [`powi`][Self::powi] and [`sqrt`][Self::sqrt]:
27///
28#[cfg_attr(feature = "std", doc = "```")]
29#[cfg_attr(not(feature = "std"), doc = "```ignore")]
30/// use num_primitive::PrimitiveFloat;
31///
32/// // Euclidean distance, √(∑(aᵢ - bᵢ)²)
33/// fn distance<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
34/// assert_eq!(a.len(), b.len());
35/// core::iter::zip(a, b).map(|(a, b)| (*a - b).powi(2)).sum::<T>().sqrt()
36/// }
37///
38/// assert_eq!(distance::<f32>(&[0., 0.], &[3., 4.]), 5.);
39/// assert_eq!(distance::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 3.);
40/// ```
41///
42/// This example works without any features:
43///
44/// ```
45/// use num_primitive::PrimitiveFloat;
46///
47/// // Squared Euclidean distance, ∑(aᵢ - bᵢ)²
48/// fn distance_squared<T: PrimitiveFloat>(a: &[T], b: &[T]) -> T {
49/// assert_eq!(a.len(), b.len());
50/// core::iter::zip(a, b).map(|(a, b)| (*a - b)).map(|x| x * x).sum::<T>()
51/// }
52///
53/// assert_eq!(distance_squared::<f32>(&[0., 0.], &[3., 4.]), 25.);
54/// assert_eq!(distance_squared::<f64>(&[0., 1., 2.], &[1., 3., 0.]), 9.);
55/// ```
56pub trait PrimitiveFloat:
57 PrimitiveNumber + From<i8> + From<u8> + core::ops::Neg<Output = Self>
58{
59 /// Approximate number of significant digits in base 10.
60 const DIGITS: u32;
61
62 /// Machine epsilon value.
63 const EPSILON: Self;
64
65 /// Infinity (∞).
66 const INFINITY: Self;
67
68 /// Number of significant digits in base 2.
69 const MANTISSA_DIGITS: u32;
70
71 /// Largest finite value.
72 const MAX: Self;
73
74 /// Maximum _x_ for which 10<sup>_x_</sup> is normal.
75 const MAX_10_EXP: i32;
76
77 /// Maximum possible power of 2 exponent.
78 const MAX_EXP: i32;
79
80 /// Smallest finite value.
81 const MIN: Self;
82
83 /// Minimum _x_ for which 10<sup>_x_</sup> is normal.
84 const MIN_10_EXP: i32;
85
86 /// One greater than the minimum possible normal power of 2 exponent.
87 const MIN_EXP: i32;
88
89 /// Smallest positive normal value.
90 const MIN_POSITIVE: Self;
91
92 /// Not a Number (NaN).
93 const NAN: Self;
94
95 /// Negative infinity (−∞).
96 const NEG_INFINITY: Self;
97
98 /// The radix or base of the internal representation.
99 const RADIX: u32;
100
101 // The following are not inherent consts, rather from `core::{float}::consts`.
102
103 /// Euler's number (e)
104 const E: Self;
105
106 /// 1/π
107 const FRAC_1_PI: Self;
108
109 /// 1/sqrt(2)
110 const FRAC_1_SQRT_2: Self;
111
112 /// 2/π
113 const FRAC_2_PI: Self;
114
115 /// 2/sqrt(π)
116 const FRAC_2_SQRT_PI: Self;
117
118 /// π/2
119 const FRAC_PI_2: Self;
120
121 /// π/3
122 const FRAC_PI_3: Self;
123
124 /// π/4
125 const FRAC_PI_4: Self;
126
127 /// π/6
128 const FRAC_PI_6: Self;
129
130 /// π/8
131 const FRAC_PI_8: Self;
132
133 /// ln(2)
134 const LN_2: Self;
135
136 /// ln(10)
137 const LN_10: Self;
138
139 /// log₂(10)
140 const LOG2_10: Self;
141
142 /// log₂(e)
143 const LOG2_E: Self;
144
145 /// log₁₀(2)
146 const LOG10_2: Self;
147
148 /// log₁₀(e)
149 const LOG10_E: Self;
150
151 /// Archimedes' constant (π)
152 const PI: Self;
153
154 /// sqrt(2)
155 const SQRT_2: Self;
156
157 /// The full circle constant (τ)
158 const TAU: Self;
159
160 /// An unsigned integer type used by methods [`from_bits`][Self::from_bits] and
161 /// [`to_bits`][Self::to_bits].
162 type Bits: PrimitiveUnsigned;
163
164 /// Computes the absolute value of `self`.
165 fn abs(self) -> Self;
166
167 /// Restrict a value to a certain interval unless it is NaN.
168 fn clamp(self, min: Self, max: Self) -> Self;
169
170 /// Returns the floating point category of the number. If only one property is going to be
171 /// tested, it is generally faster to use the specific predicate instead.
172 fn classify(self) -> FpCategory;
173
174 /// Returns a number composed of the magnitude of `self` and the sign of sign.
175 fn copysign(self, sign: Self) -> Self;
176
177 /// Raw transmutation from `Self::Bits`.
178 fn from_bits(value: Self::Bits) -> Self;
179
180 /// Returns `true` if this number is neither infinite nor NaN.
181 fn is_finite(self) -> bool;
182
183 /// Returns `true` if this value is positive infinity or negative infinity.
184 fn is_infinite(self) -> bool;
185
186 /// Returns `true` if this value is NaN.
187 fn is_nan(self) -> bool;
188
189 /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
190 fn is_normal(self) -> bool;
191
192 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with negative sign bit
193 /// and negative infinity.
194 fn is_sign_negative(self) -> bool;
195
196 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with positive sign bit
197 /// and positive infinity.
198 fn is_sign_positive(self) -> bool;
199
200 /// Returns `true` if the number is subnormal.
201 fn is_subnormal(self) -> bool;
202
203 /// Returns the maximum of the two numbers, ignoring NaN.
204 fn max(self, other: Self) -> Self;
205
206 /// Calculates the middle point of `self` and `other`.
207 fn midpoint(self, other: Self) -> Self;
208
209 /// Returns the minimum of the two numbers, ignoring NaN.
210 fn min(self, other: Self) -> Self;
211
212 /// Takes the reciprocal (inverse) of a number, `1/x`.
213 fn recip(self) -> Self;
214
215 /// Returns a number that represents the sign of `self`.
216 fn signum(self) -> Self;
217
218 /// Raw transmutation to `Self::Bits`.
219 fn to_bits(self) -> Self::Bits;
220
221 /// Converts radians to degrees.
222 fn to_degrees(self) -> Self;
223
224 /// Converts degrees to radians.
225 fn to_radians(self) -> Self;
226
227 /// Returns the ordering between `self` and `other`.
228 fn total_cmp(&self, other: &Self) -> Ordering;
229
230 /// Rounds toward zero and converts to any primitive integer type, assuming that the value is
231 /// finite and fits in that type.
232 ///
233 /// # Safety
234 ///
235 /// The value must:
236 ///
237 /// * Not be `NaN`
238 /// * Not be infinite
239 /// * Be representable in the return type `Int`, after truncating off its fractional part
240 unsafe fn to_int_unchecked<Int>(self) -> Int
241 where
242 Self: PrimitiveFloatToInt<Int>;
243
244 /// Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN
245 /// if the number is outside the range [-1, 1].
246 #[cfg(feature = "std")]
247 fn acos(self) -> Self;
248
249 /// Inverse hyperbolic cosine function.
250 #[cfg(feature = "std")]
251 fn acosh(self) -> Self;
252
253 /// Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or
254 /// NaN if the number is outside the range [-1, 1].
255 #[cfg(feature = "std")]
256 fn asin(self) -> Self;
257
258 /// Inverse hyperbolic sine function.
259 #[cfg(feature = "std")]
260 fn asinh(self) -> Self;
261
262 /// Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
263 #[cfg(feature = "std")]
264 fn atan(self) -> Self;
265
266 /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
267 #[cfg(feature = "std")]
268 fn atan2(self, other: Self) -> Self;
269
270 /// Inverse hyperbolic tangent function.
271 #[cfg(feature = "std")]
272 fn atanh(self) -> Self;
273
274 /// Returns the cube root of a number.
275 #[cfg(feature = "std")]
276 fn cbrt(self) -> Self;
277
278 /// Returns the smallest integer greater than or equal to `self`.
279 #[cfg(feature = "std")]
280 fn ceil(self) -> Self;
281
282 /// Computes the cosine of a number (in radians).
283 #[cfg(feature = "std")]
284 fn cos(self) -> Self;
285
286 /// Hyperbolic cosine function.
287 #[cfg(feature = "std")]
288 fn cosh(self) -> Self;
289
290 /// Calculates Euclidean division, the matching method for `rem_euclid`.
291 #[cfg(feature = "std")]
292 fn div_euclid(self, rhs: Self) -> Self;
293
294 /// Returns `e^(self)`, (the exponential function).
295 #[cfg(feature = "std")]
296 fn exp(self) -> Self;
297
298 /// Returns `2^(self)`.
299 #[cfg(feature = "std")]
300 fn exp2(self) -> Self;
301
302 /// Returns `e^(self) - 1` in a way that is accurate even if the number is close to zero.
303 #[cfg(feature = "std")]
304 fn exp_m1(self) -> Self;
305
306 /// Returns the largest integer less than or equal to `self`.
307 #[cfg(feature = "std")]
308 fn floor(self) -> Self;
309
310 /// Returns the fractional part of `self`.
311 #[cfg(feature = "std")]
312 fn fract(self) -> Self;
313
314 /// Compute the distance between the origin and a point (`x`, `y`) on the Euclidean plane.
315 /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other
316 /// sides having length `x.abs()` and `y.abs()`.
317 #[cfg(feature = "std")]
318 fn hypot(self, other: Self) -> Self;
319
320 /// Returns the natural logarithm of the number.
321 #[cfg(feature = "std")]
322 fn ln(self) -> Self;
323
324 /// Returns `ln(1+n)` (natural logarithm) more accurately than if the operations were performed
325 /// separately.
326 #[cfg(feature = "std")]
327 fn ln_1p(self) -> Self;
328
329 /// Returns the logarithm of the number with respect to an arbitrary base.
330 #[cfg(feature = "std")]
331 fn log(self, base: Self) -> Self;
332
333 /// Returns the base 2 logarithm of the number.
334 #[cfg(feature = "std")]
335 fn log2(self) -> Self;
336
337 /// Returns the base 10 logarithm of the number.
338 #[cfg(feature = "std")]
339 fn log10(self) -> Self;
340
341 /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error, yielding a more
342 /// accurate result than an unfused multiply-add.
343 #[cfg(feature = "std")]
344 fn mul_add(self, a: Self, b: Self) -> Self;
345
346 /// Raises a number to a floating point power.
347 #[cfg(feature = "std")]
348 fn powf(self, n: Self) -> Self;
349
350 /// Raises a number to an integer power.
351 #[cfg(feature = "std")]
352 fn powi(self, n: i32) -> Self;
353
354 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
355 #[cfg(feature = "std")]
356 fn rem_euclid(self, rhs: Self) -> Self;
357
358 /// Returns the nearest integer to `self`. If a value is half-way between two integers, round
359 /// away from `0.0`.
360 #[cfg(feature = "std")]
361 fn round(self) -> Self;
362
363 /// Returns the nearest integer to a number. Rounds half-way cases to the number with an even
364 /// least significant digit.
365 #[cfg(feature = "std")]
366 fn round_ties_even(self) -> Self;
367
368 /// Computes the sine of a number (in radians).
369 #[cfg(feature = "std")]
370 fn sin(self) -> Self;
371
372 /// Simultaneously computes the sine and cosine of the number, `x`. Returns `(sin(x), cos(x))`.
373 #[cfg(feature = "std")]
374 fn sin_cos(self) -> (Self, Self);
375
376 /// Hyperbolic sine function.
377 #[cfg(feature = "std")]
378 fn sinh(self) -> Self;
379
380 /// Returns the square root of a number.
381 #[cfg(feature = "std")]
382 fn sqrt(self) -> Self;
383
384 /// Computes the tangent of a number (in radians).
385 #[cfg(feature = "std")]
386 fn tan(self) -> Self;
387
388 /// Hyperbolic tangent function.
389 #[cfg(feature = "std")]
390 fn tanh(self) -> Self;
391
392 /// Returns the integer part of `self`. This means that non-integer numbers are always
393 /// truncated towards zero.
394 #[cfg(feature = "std")]
395 fn trunc(self) -> Self;
396}
397
398/// Trait for references to primitive floating-point types ([`PrimitiveFloat`]).
399///
400/// This enables traits like the standard operators in generic code,
401/// e.g. `where &T: PrimitiveFloatRef<T>`.
402pub trait PrimitiveFloatRef<T>: PrimitiveNumberRef<T> + core::ops::Neg<Output = T> {}
403
404/// Trait for conversions supported by [`PrimitiveFloat::to_int_unchecked`].
405///
406/// This is effectively the same as the unstable [`core::convert::FloatToInt`], implemented for all
407/// combinations of [`PrimitiveFloat`] and [`PrimitiveInteger`][crate::PrimitiveInteger].
408pub trait PrimitiveFloatToInt<Int>: PrimitiveFloat {
409 #[doc(hidden)]
410 #[expect(private_interfaces)]
411 unsafe fn __to_int_unchecked(x: Self, _: SealedToken) -> Int;
412}
413
414macro_rules! impl_float {
415 ($Float:ident, $consts:ident, $Bits:ty) => {
416 impl PrimitiveFloat for $Float {
417 use_consts!(Self::{
418 DIGITS: u32,
419 EPSILON: Self,
420 INFINITY: Self,
421 MANTISSA_DIGITS: u32,
422 MAX: Self,
423 MAX_10_EXP: i32,
424 MAX_EXP: i32,
425 MIN: Self,
426 MIN_10_EXP: i32,
427 MIN_EXP: i32,
428 MIN_POSITIVE: Self,
429 NAN: Self,
430 NEG_INFINITY: Self,
431 RADIX: u32,
432 });
433
434 use_consts!($consts::{
435 E: Self,
436 FRAC_1_PI: Self,
437 FRAC_1_SQRT_2: Self,
438 FRAC_2_PI: Self,
439 FRAC_2_SQRT_PI: Self,
440 FRAC_PI_2: Self,
441 FRAC_PI_3: Self,
442 FRAC_PI_4: Self,
443 FRAC_PI_6: Self,
444 FRAC_PI_8: Self,
445 LN_2: Self,
446 LN_10: Self,
447 LOG2_10: Self,
448 LOG2_E: Self,
449 LOG10_2: Self,
450 LOG10_E: Self,
451 PI: Self,
452 SQRT_2: Self,
453 TAU: Self,
454 });
455
456 type Bits = $Bits;
457
458 forward! {
459 fn from_bits(value: Self::Bits) -> Self;
460 }
461 forward! {
462 fn abs(self) -> Self;
463 fn clamp(self, min: Self, max: Self) -> Self;
464 fn classify(self) -> FpCategory;
465 fn copysign(self, sign: Self) -> Self;
466 fn is_finite(self) -> bool;
467 fn is_infinite(self) -> bool;
468 fn is_nan(self) -> bool;
469 fn is_normal(self) -> bool;
470 fn is_sign_negative(self) -> bool;
471 fn is_sign_positive(self) -> bool;
472 fn is_subnormal(self) -> bool;
473 fn max(self, other: Self) -> Self;
474 fn midpoint(self, other: Self) -> Self;
475 fn min(self, other: Self) -> Self;
476 fn recip(self) -> Self;
477 fn signum(self) -> Self;
478 fn to_bits(self) -> Self::Bits;
479 fn to_degrees(self) -> Self;
480 fn to_radians(self) -> Self;
481 }
482 forward! {
483 fn total_cmp(&self, other: &Self) -> Ordering;
484 }
485
486 // NOTE: This is still effectively forwarding, but we need some indirection
487 // to avoid naming the unstable `core::convert::FloatToInt`.
488 #[doc = forward_doc!(to_int_unchecked)]
489 #[inline]
490 unsafe fn to_int_unchecked<Int>(self) -> Int
491 where
492 Self: PrimitiveFloatToInt<Int>,
493 {
494 // SAFETY: we're just passing through here!
495 unsafe { <Self as PrimitiveFloatToInt<Int>>::__to_int_unchecked(self, SealedToken) }
496 }
497
498 // --- std-only methods ---
499
500 #[cfg(feature = "std")]
501 forward! {
502 fn acos(self) -> Self;
503 fn acosh(self) -> Self;
504 fn asin(self) -> Self;
505 fn asinh(self) -> Self;
506 fn atan(self) -> Self;
507 fn atan2(self, other: Self) -> Self;
508 fn atanh(self) -> Self;
509 fn cbrt(self) -> Self;
510 fn ceil(self) -> Self;
511 fn cos(self) -> Self;
512 fn cosh(self) -> Self;
513 fn div_euclid(self, rhs: Self) -> Self;
514 fn exp(self) -> Self;
515 fn exp2(self) -> Self;
516 fn exp_m1(self) -> Self;
517 fn floor(self) -> Self;
518 fn fract(self) -> Self;
519 fn hypot(self, other: Self) -> Self;
520 fn ln(self) -> Self;
521 fn ln_1p(self) -> Self;
522 fn log(self, base: Self) -> Self;
523 fn log2(self) -> Self;
524 fn log10(self) -> Self;
525 fn mul_add(self, a: Self, b: Self) -> Self;
526 fn powf(self, n: Self) -> Self;
527 fn powi(self, n: i32) -> Self;
528 fn rem_euclid(self, rhs: Self) -> Self;
529 fn round(self) -> Self;
530 fn round_ties_even(self) -> Self;
531 fn sin(self) -> Self;
532 fn sin_cos(self) -> (Self, Self);
533 fn sinh(self) -> Self;
534 fn sqrt(self) -> Self;
535 fn tan(self) -> Self;
536 fn tanh(self) -> Self;
537 fn trunc(self) -> Self;
538 }
539 }
540
541 impl PrimitiveFloatRef<$Float> for &$Float {}
542 }
543}
544
545impl_float!(f32, f32_consts, u32);
546impl_float!(f64, f64_consts, u64);
547
548// NOTE: the extra module level here is to make sure that `PrimitiveFloat` isn't in scope, so we
549// can be sure that we're not recursing. Elsewhere we rely on the normal `unconditional-recursion`
550// lint, but that doesn't see through this level of trait indirection.
551mod internal {
552 macro_rules! impl_float_to_int {
553 ($Float:ty => $($Int:ty),+) => {
554 $(
555 impl super::PrimitiveFloatToInt<$Int> for $Float {
556 #[inline]
557 #[expect(private_interfaces)]
558 unsafe fn __to_int_unchecked(x: Self, _: super::SealedToken) -> $Int {
559 // SAFETY: we're just passing through here!
560 unsafe { <$Float>::to_int_unchecked::<$Int>(x) }
561 }
562 }
563 )+
564 }
565 }
566
567 impl_float_to_int!(f32 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
568 impl_float_to_int!(f64 => u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
569}