1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use core::default::Default;
use std::ops::{BitAnd, BitOr};

use either::Either;
use num_integer::{Integer, Roots};
use num_traits::Pow;

/// This trait support unified bit testing for (unsigned) integers
pub trait BitTest {
    /// Get the minimum required number of bits to represent this integer
    fn bits(&self) -> usize;

    /// Get the i-th bit of the integer, with i specified by `position`
    fn bit(&self, position: usize) -> bool;

    /// Get the number of trailing zeros in the integer
    fn trailing_zeros(&self) -> usize;
}

/// This enum describes the result of primality checks
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Primality {
    /// The number passes deterministic primality check.
    Yes,
    /// The number is a composite and failed at least one specific primality check.
    No,
    /// The number passes several probabilistic primality check.
    /// The associated float number carries the probability of the number being a prime
    /// (conditioned on that it's already a probable prime)
    Probable(f32),
}

impl Primality {
    /// Check whether the resule indicates that the number is
    /// (very) probably a prime. Return false only on [Primality::No]
    #[inline(always)]
    pub fn probably(self) -> bool {
        match self {
            Primality::No => false,
            _ => true,
        }
    }
}

impl BitAnd<Primality> for Primality {
    type Output = Primality;

    /// Combine two primality results by ensuring both numbers are prime
    fn bitand(self, rhs: Primality) -> Self::Output {
        match self {
            Primality::No => Primality::No,
            Primality::Yes => rhs,
            Primality::Probable(p) => match rhs {
                Primality::No => Primality::No,
                Primality::Yes => Primality::Probable(p),
                Primality::Probable(p2) => Primality::Probable(p * p2),
            },
        }
    }
}

impl BitOr<Primality> for Primality {
    type Output = Primality;

    /// Combine two primality results by ensuring either numbers is prime
    fn bitor(self, rhs: Primality) -> Self::Output {
        match self {
            Primality::No => rhs,
            Primality::Yes => Primality::Yes,
            Primality::Probable(p) => match rhs {
                Primality::No => Primality::Probable(p),
                Primality::Yes => Primality::Yes,
                Primality::Probable(p2) => Primality::Probable(1. - (1. - p) * (1. - p2)),
            },
        }
    }
}

/// Represents a configuration for a primality test
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub struct PrimalityTestConfig {
    // TODO: add option to divides small primes in the table
    //       and this option should be enabled if the probabilistic test is used for strict config
    /// Number of strong probable prime test, starting from base 2
    pub sprp_trials: usize,

    /// Number of strong probable prime test with random bases
    pub sprp_random_trials: usize,

    /// Whether perform strong lucas probable prime test (with automatically selected parameters)
    pub slprp_test: bool,

    /// Whether perform extra strong lucas probable prime test (with automatically selected parameters)
    pub eslprp_test: bool,
}

impl Default for PrimalityTestConfig {
    /// Create a defalt primality testing configuration. This config will eliminate most
    /// composites with little computation
    fn default() -> Self {
        Self {
            sprp_trials: 2,        // test base 2 and 3
            sprp_random_trials: 3, // choose other 3 random bases
            slprp_test: false,
            eslprp_test: false,
        }
    }
}

impl PrimalityTestConfig {
    /// Create a configuration with a very strong primality check. It's based on
    /// the **strongest deterministic primality testing** and some SPRP tests with
    /// random bases.
    pub fn strict() -> Self {
        let mut config = Self::bpsw();
        config.sprp_random_trials = 1;
        config
    }

    /// Create a configuration for Baillie-PSW test (base 2 SPRP test + SLPRP test)
    pub fn bpsw() -> Self {
        Self {
            sprp_trials: 1,
            sprp_random_trials: 0,
            slprp_test: true,
            eslprp_test: false,
        }
    }

    /// Create a configuration for PSW test (base 2 SPRP + Fibonacci test)
    fn psw() {
        todo!() // TODO: implement Fibonacci PRP
    }
}

/// Represents a configuration for integer factorization
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub struct FactorizationConfig {
    /// Config for testing if a factor is prime
    pub primality_config: PrimalityTestConfig,

    /// Prime limit of trial division, you also need to reserve the primes in the buffer
    /// if all primes under the limit are to be tested. `None` means using all available primes.
    pub td_limit: Option<u64>,

    /// Number of trials with Pollard's rho method
    pub rho_trials: usize,

    /// Number of trials with Pollard's p-1 method
    pm1_trials: usize,

    /// Number of trials with William's p+1 method
    pp1_trials: usize,
}

impl Default for FactorizationConfig {
    /// Create a defalt primality testing configuration. This config will factorize
    /// most integers within decent time
    fn default() -> Self {
        const THRESHOLD_DEFAULT_TD: u64 = 1 << 14;
        Self {
            primality_config: PrimalityTestConfig::default(),
            td_limit: Some(THRESHOLD_DEFAULT_TD),
            rho_trials: 4,
            pm1_trials: 0,
            pp1_trials: 0,
        }
    }
}

impl FactorizationConfig {
    /// Same as the default configuration but with strict primality check
    pub fn strict() -> Self {
        let mut config = Self::default();
        config.primality_config = PrimalityTestConfig::strict();
        config
    }
}

// FIXME: backport to num_integer (see https://github.com/rust-num/num-traits/issues/233)
/// Extension on [num_integer::Roots] to support perfect power check on integers
pub trait ExactRoots: Roots + Pow<u32, Output = Self> + Clone {
    fn nth_root_exact(&self, n: u32) -> Option<Self> {
        let r = self.nth_root(n);
        if &r.clone().pow(n) == self {
            Some(r)
        } else {
            None
        }
    }
    fn sqrt_exact(&self) -> Option<Self> {
        self.nth_root_exact(2)
    }
    fn cbrt_exact(&self) -> Option<Self> {
        self.nth_root_exact(3)
    }
    fn is_nth_power(&self, n: u32) -> bool {
        self.nth_root_exact(n).is_some()
    }
    fn is_square(&self) -> bool {
        self.sqrt_exact().is_some()
    }
    fn is_cubic(&self) -> bool {
        self.cbrt_exact().is_some()
    }
}

// TODO: implement is_perfect_power, this could be used during factorization
//       to filter out perfect powers when factorize large integers
// REF: PARI/GP `Z_ispowerall`, `is_357_power`
//      FLINT `n_is_perfect_power235`, `fmpz_is_perfect_power`
//      GMP `mpz_perfect_power_p`

/// This trait represents a general data structure that stores primes.
///
/// It's recommended to store at least a bunch of small primes in the buffer
/// to make some of the algorithms more efficient.
pub trait PrimeBuffer<'a> {
    type PrimeIter: Iterator<Item = &'a u64>;

    /// Directly return an iterator of existing primes
    fn iter(&'a self) -> Self::PrimeIter;

    /// Generate primes until the largest prime in the buffer is equal or larger than limit
    fn reserve(&mut self, limit: u64);

    /// Get the largest primes in the list
    fn bound(&self) -> u64;

    /// Test if the number is in the buffer. If a number is not in the buffer,
    /// then it's either a composite or large than [PrimeBuffer::bound()]
    fn contains(&self, num: u64) -> bool;

    /// clear the prime buffer to save memory
    fn clear(&mut self);
}

/// This trait implements various primality testing algorithms
///
/// Reference:
/// - <http://ntheory.org/pseudoprimes.html>
pub trait PrimalityUtils: Integer + Clone {
    /// Test if the integer is a (Fermat) probable prime
    fn is_prp(&self, base: Self) -> bool;

    /// Test if the integer is a strong probable prime (based on Miller-Rabin test).
    fn is_sprp(&self, base: Self) -> bool;

    /// Do a Miller-Rabin test. The return value is a integer if it finds a factor of
    /// the integer, otherwise it reports the test result.
    fn test_sprp(&self, base: Self) -> Either<bool, Self>;

    /// Test if the integer is a Lucas probable prime
    /// If either of p, q is not specified, then we will use Selfridge's Method A to choose p, q
    fn is_lprp(&self, p: Option<usize>, q: Option<isize>) -> bool;

    /// Test if the integer is a strong Lucas probable prime
    /// If either of p, q is not specified, then we will use Selfridge's Method A to choose p, q
    fn is_slprp(&self, p: Option<usize>, q: Option<isize>) -> bool;

    /// Test if the integer is an extra strong Lucas probable prime
    /// If p is not specified, then first p starting from 3 such that Jacobi symbol is -1 will be chosen, which is sometimes refered as "Method C"
    fn is_eslprp(&self, p: Option<usize>) -> bool;

    // TODO: implement ECPP test
    // https://en.wikipedia.org/wiki/Elliptic_curve_primality

    // TODO: implement is_vprp (Lucas-V probable prime test)
    // https://arxiv.org/pdf/2006.14425.pdf
}

/// Supports random generation of primes
pub trait RandPrime<T> {
    /// Generate a random prime within the given bit size limit
    ///
    /// # Panics
    /// if the bit_size is 0 or it's larger than the bit width of the integer
    fn gen_prime(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> T;

    /// Generate a random prime with **exact** the given bit size
    ///
    /// # Panics
    /// if the bit_size is 0 or it's larger than the bit width of the integer
    fn gen_prime_exact(&mut self, bit_size: usize, config: Option<PrimalityTestConfig>) -> T;

    /// Generate a random (Sophie German) safe prime within the given bit size limit. The generated prime
    /// is guaranteed to pass the [is_safe_prime][crate::nt_funcs::is_safe_prime] test
    ///
    /// # Panics
    /// if the bit_size is 0 or it's larger than the bit width of the integer
    fn gen_safe_prime(&mut self, bit_size: usize) -> T;

    /// Generate a random (Sophie German) safe prime with the **exact** given bit size. The generated prime
    /// is guaranteed to pass the [is_safe_prime][crate::nt_funcs::is_safe_prime] test
    ///
    /// # Panics
    /// if the bit_size is 0 or it's larger than the bit width of the integer
    fn gen_safe_prime_exact(&mut self, bit_size: usize) -> T;
}