1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use crate::NumHash;
use num_modular::{ModularAbs, FixedMersenneInt, ModularInteger};
use num_traits::float::FloatCore;
#[cfg(feature = "num-rational")]
use num_traits::Inv;
use core::hash::{Hash, Hasher};
type MInt = FixedMersenneInt::<127, 1>;
const M127: i128 = i128::MAX;
const M127U: u128 = M127 as u128;
const M127D: u128 = M127U + M127U;
#[cfg(feature = "num-complex")]
const PROOT: u128 = i32::MAX as u128;
const HASH_INF: i128 = i128::MAX;
const HASH_NEGINF: i128 = i128::MIN;
impl NumHash for i128 {
#[inline]
fn num_hash<H: Hasher>(&self, state: &mut H) {
const MINP1: i128 = i128::MIN + 1;
match *self {
i128::MAX | MINP1 => 0i128.hash(state),
i128::MIN => (-1i128).hash(state),
u => u.hash(state),
}
}
}
impl NumHash for u128 {
#[inline]
fn num_hash<H: Hasher>(&self, state: &mut H) {
match *self {
u128::MAX => 1i128.hash(state),
M127D => 0i128.hash(state),
u if u >= M127U => ((u - M127U) as i128).hash(state),
u => (u as i128).hash(state)
}
}
}
macro_rules! impl_hash_for_small_int {
($($signed:ty)*) => ($(
impl NumHash for $signed {
#[inline]
fn num_hash<H: Hasher>(&self, state: &mut H) {
(&(*self as i128)).hash(state)
}
}
)*);
}
impl_hash_for_small_int! { i8 i16 i32 i64 u8 u16 u32 u64}
impl NumHash for usize {
#[inline]
fn num_hash<H: Hasher>(&self, state: &mut H) {
#[cfg(target_pointer_width = "32")]
return (&(*self as u32)).num_hash(state);
#[cfg(target_pointer_width = "64")]
return (&(*self as u64)).num_hash(state);
}
}
impl NumHash for isize {
#[inline]
fn num_hash<H: Hasher>(&self, state: &mut H) {
#[cfg(target_pointer_width = "32")]
return (&(*self as i32)).num_hash(state);
#[cfg(target_pointer_width = "64")]
return (&(*self as i64)).num_hash(state);
}
}
#[cfg(feature = "num-bigint")]
mod _num_bigint {
use super::*;
use num_bigint::{BigInt, BigUint};
use num_traits::ToPrimitive;
impl NumHash for BigUint {
fn num_hash<H: Hasher>(&self, state: &mut H) {
(self % BigUint::from(M127U)).to_i128().unwrap().hash(state)
}
}
impl NumHash for BigInt {
fn num_hash<H: Hasher>(&self, state: &mut H) {
(self % BigInt::from(M127)).to_i128().unwrap().hash(state)
}
}
}
fn hash_float<T: FloatCore>(v: &T) -> i128 {
if v.is_nan() {
0i128
} else if v.is_infinite() {
if v.is_sign_positive() {
HASH_INF
} else {
HASH_NEGINF
}
} else {
let (mantissa, exp, sign) = v.integer_decode();
let mantissa = MInt::new(mantissa as u128, &M127U);
let pow = mantissa.convert(1 << exp.absm(&127));
let v = mantissa * pow;
v.residue() as i128 * sign as i128
}
}
macro_rules! impl_hash_for_float {
($($float:ty)*) => ($(
impl NumHash for $float {
fn num_hash<H: Hasher>(&self, state: &mut H) {
hash_float(self).num_hash(state)
}
}
)*);
}
impl_hash_for_float! { f32 f64 }
#[cfg(feature = "num-rational")]
mod _num_rational {
use super::*;
use core::ops::Neg;
use num_rational::Ratio;
macro_rules! impl_hash_for_ratio {
($($int:ty)*) => ($(
impl NumHash for Ratio<$int> {
fn num_hash<H: Hasher>(&self, state: &mut H) {
let ub = *self.denom() as u128;
let binv = if ub != M127U {
MInt::new(ub, &M127U).inv()
} else {
MInt::new(HASH_NEGINF as u128, &M127U)
};
let ua = if self.numer() < &0 { (*self.numer() as u128).wrapping_neg() } else { *self.numer() as u128 };
let ua = binv.convert(ua);
let ab = (ua * binv).residue() as i128;
if self.numer() >= &0 {
ab.num_hash(state)
} else {
ab.neg().num_hash(state)
}
}
}
)*);
}
impl_hash_for_ratio!(i8 i16 i32 i64 i128 isize);
#[cfg(feature = "num-bigint")]
mod _num_bigint {
use super::*;
use num_bigint::{BigInt, BigUint};
use num_traits::{ToPrimitive, Zero, Signed};
impl NumHash for Ratio<BigInt> {
fn num_hash<H: Hasher>(&self, state: &mut H) {
let ub = (self.denom().magnitude() % BigUint::from(M127U)).to_u128().unwrap();
let binv = if !ub.is_zero() {
MInt::new(ub, &M127U).inv()
} else {
MInt::new(HASH_NEGINF as u128, &M127U)
};
let ua = (self.numer().magnitude() % BigUint::from(M127U)).to_u128().unwrap();
let ua = binv.convert(ua);
let ab = (ua * binv).residue() as i128;
if self.numer().is_negative() {
ab.neg().num_hash(state)
} else {
ab.num_hash(state)
}
}
}
}
}
#[cfg(feature = "num-complex")]
mod _num_complex {
use super::*;
use num_complex::Complex;
macro_rules! impl_complex_hash_for_float {
($($float:ty)*) => ($(
impl NumHash for Complex<$float> {
fn num_hash<H: Hasher>(&self, state: &mut H) {
let a = hash_float(&self.re);
let b = hash_float(&self.im);
let bterm = if b >= 0 {
let pb = MInt::new(b as u128, &M127U) * PROOT;
-((pb * pb).residue() as i128)
} else {
let pb = MInt::new((-b) as u128, &M127U) * PROOT;
(pb * pb).residue() as i128
};
(a + bterm).num_hash(state)
}
}
)*);
}
impl_complex_hash_for_float!(f32 f64);
}