1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
use crate::{udouble, umax, ModularInteger, ModularUnaryOps};
use core::ops::*;
use num_traits::{Inv, Pow};

// FIXME: use unchecked operators to speed up calculation (after https://github.com/rust-lang/rust/issues/85122)
/// An unsigned integer modulo (pseudo) Mersenne primes `2^P - K`, it supports `P` up to 127 and `K < 2^(P-1)`
///
/// IMPORTANT NOTE: this class assumes that `2^P-K` is a prime. During compliation, we don't do full check
/// of the primality of `2^P-K`. If it's not a prime, then the modular division and inverse will panic.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct MersenneInt<const P: u8, const K: umax>(umax); // the underlying integer is in the inclusive range [0, 2^P-K]

// XXX: support other primes as modulo, such as solinas prime, proth prime

impl<const P: u8, const K: umax> MersenneInt<P, K> {
    const BITMASK: umax = (1 << P) - 1;
    const MODULUS: umax = (1 << P) - K;

    // Calculate v % Self::MODULUS, where v is a umax integer
    const fn reduce_single(v: umax) -> umax {
        let mut lo = v & Self::BITMASK;
        let mut hi = v >> P;
        while hi > 0 {
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum & Self::BITMASK;
            hi = sum >> P;
        }
    
        if K == 1 {
            lo
        } else {
            if lo > Self::MODULUS {
                lo - Self::MODULUS
            } else {
                lo
            }
        }
    }

    // Calculate v % Self::MODULUS, where v is a udouble integer
    fn reduce_double(v: udouble) -> umax {
        // reduce modulo
        let mut lo = v.lo & Self::BITMASK;
        let mut hi = v >> P;
        while hi.hi > 0 {
            // first reduce until high bits fit in umax
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum.lo & Self::BITMASK;
            hi = sum >> P;
        }

        let mut hi = hi.lo;
        while hi > 0 {
            // then reduce the smaller high bits
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum & Self::BITMASK;
            hi = sum >> P;
        }

        if K == 1 {
            lo
        } else {
            if lo > Self::MODULUS {
                lo - Self::MODULUS
            } else {
                lo
            }
        }
    }

    /// Create a new MersenneInt instance from a normal integer (by modulo `2^P-K`)
    #[inline]
    pub const fn new(n: umax) -> Self {
        // FIXME: use compile time checks, maybe after https://github.com/rust-lang/rust/issues/76560
        assert!(P <= 127);
        assert!(K > 0 && K < 2u128.pow(P as u32 - 1) && K % 2 == 1);
        assert!(
            Self::MODULUS % 3 != 0
                && Self::MODULUS % 5 != 0
                && Self::MODULUS % 7 != 0
                && Self::MODULUS % 11 != 0
                && Self::MODULUS % 13 != 0
        ); // error on easy composites
        Self(Self::reduce_single(n))
    }
}

impl<const P: u8, const K: umax> From<umax> for MersenneInt<P, K> {
    fn from(v: umax) -> Self {
        Self(v)
    }
}

impl<const P: u8, const K: umax> From<MersenneInt<P, K>> for umax {
    fn from(v: MersenneInt<P, K>) -> Self {
        v.0
    }
}

impl<const P: u8, const K: umax> Add for MersenneInt<P, K> {
    type Output = Self;
    #[inline]
    fn add(self, rhs: Self) -> Self {
        let sum = self.0 + rhs.0;
        Self(if sum > Self::MODULUS {
            sum - Self::MODULUS
        } else {
            sum
        })
    }
}

impl<const P: u8, const K: umax> Sub for MersenneInt<P, K> {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: Self) -> Self {
        Self(if self.0 >= rhs.0 {
            self.0 - rhs.0
        } else {
            Self::MODULUS - (rhs.0 - self.0)
        })
    }
}

impl<const P: u8, const K: umax> Mul for MersenneInt<P, K> {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: Self) -> Self::Output {
        if (P as u32) < (umax::BITS / 2) {
            Self(Self::reduce_single(self.0 * rhs.0))
        } else {
            Self(Self::reduce_double(udouble::widening_mul(self.0, rhs.0)))
        }
    }
}

impl<const P: u8, const K: umax> Pow<umax> for MersenneInt<P, K> {
    type Output = Self;

    fn pow(self, rhs: umax) -> Self::Output {
        match rhs {
            1 => self,
            2 => self * self,
            _ => {
                let mut multi = self;
                let mut exp = rhs;
                let mut result = Self(1);
                while exp > 0 {
                    if exp & 1 != 0 {
                        result = result * multi;
                    }
                    multi = multi.square();
                    exp >>= 1;
                }
                result
            }
        }
    }
}

impl<const P: u8, const K: umax> Neg for MersenneInt<P, K> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        Self(Self::MODULUS - self.0)
    }
}

impl<const P: u8, const K: umax> Inv for MersenneInt<P, K> {
    type Output = Self;
    fn inv(self) -> Self::Output {
        // It seems that extended gcd is faster than using fermat's theorem a^-1 = a^(p-2) mod p
        // For faster inverse using fermat theorem, refer to https://eprint.iacr.org/2018/1038.pdf (haven't benchmarked with this)
        Self(if (P as u32) < usize::BITS {
            (self.0 as usize)
                .invm(&(Self::MODULUS as usize))
                .expect("the modulus shoud be a prime") as umax
        } else {
            self.0
                .invm(&Self::MODULUS)
                .expect("the modulus shoud be a prime")
        })
    }
}

impl<const P: u8, const K: umax> Div for MersenneInt<P, K> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const P: u8, const K: umax> ModularInteger for MersenneInt<P, K> {
    type Base = umax;
    #[inline]
    fn modulus(&self) -> &Self::Base {
        &Self::MODULUS
    }

    #[inline]
    fn residue(&self) -> Self::Base {
        if self.0 == Self::MODULUS {
            0
        } else {
            self.0
        }
    }

    #[inline]
    fn convert(&self, n: Self::Base) -> Self {
        Self::new(n)
    }

    #[inline]
    fn double(self) -> Self {
        let sum = self.0 << 1;
        Self(if sum > Self::MODULUS {
            sum - Self::MODULUS
        } else {
            sum
        })
    }

    #[inline]
    fn square(self) -> Self {
        if (P as u32) < (umax::BITS / 2) {
            Self(Self::reduce_single(self.0 * self.0))
        } else {
            Self(Self::reduce_double(udouble::widening_square(self.0)))
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{ModularCoreOps, ModularPow};
    use rand::random;

    const P1: u128 = (1 << 31) - 1;
    const P2: u128 = (1 << 61) - 1;
    const P3: u128 = (1 << 127) - 1;
    const P4: u128 = (1 << 32) - 5;
    const P5: u128 = (1 << 56) - 5;
    const P6: u128 = (1 << 122) - 3;

    const NRANDOM: u32 = 10;

    #[test]
    fn creation_test() {
        // random creation test
        for _ in 0..NRANDOM {
            let a = random::<u128>();

            assert_eq!(MersenneInt::<31, 1>::new(a).residue(), a % P1);
            assert_eq!(MersenneInt::<61, 1>::new(a).residue(), a % P2);
            assert_eq!(MersenneInt::<127, 1>::new(a).residue(), a % P3);
            assert_eq!(MersenneInt::<32, 5>::new(a).residue(), a % P4);
            assert_eq!(MersenneInt::<56, 5>::new(a).residue(), a % P5);
            assert_eq!(MersenneInt::<122, 3>::new(a).residue(), a % P6);
        }
    }

    #[test]
    fn test_against_prim() {
        for _ in 0..NRANDOM {
            let (a, b) = (random::<u128>(), random::<u128>());
            let e = random::<u8>();

            // mod 2^31-1
            let am = MersenneInt::<31, 1>::new(a);
            let bm = MersenneInt::<31, 1>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P1));
            assert_eq!((am - bm).residue(), a.subm(b, &P1));
            assert_eq!((am * bm).residue(), a.mulm(b, &P1));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P1).unwrap(), &P1));
            assert_eq!(am.neg().residue(), a.negm(&P1));
            assert_eq!(am.double().residue(), a.dblm(&P1));
            assert_eq!(am.square().residue(), a.sqm(&P1));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P1));

            // mod 2^61-1
            let am = MersenneInt::<61, 1>::new(a);
            let bm = MersenneInt::<61, 1>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P2));
            assert_eq!((am - bm).residue(), a.subm(b, &P2));
            assert_eq!((am * bm).residue(), a.mulm(b, &P2));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P2).unwrap(), &P2));
            assert_eq!(am.neg().residue(), a.negm(&P2));
            assert_eq!(am.double().residue(), a.dblm(&P2));
            assert_eq!(am.square().residue(), a.sqm(&P2));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P2));

            // mod 2^127-1
            let am = MersenneInt::<127, 1>::new(a);
            let bm = MersenneInt::<127, 1>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P3));
            assert_eq!((am - bm).residue(), a.subm(b, &P3));
            assert_eq!((am * bm).residue(), a.mulm(b, &P3));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P3).unwrap(), &P3));
            assert_eq!(am.neg().residue(), a.negm(&P3));
            assert_eq!(am.double().residue(), a.dblm(&P3));
            assert_eq!(am.square().residue(), a.sqm(&P3));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P3));

            // mod 2^32-5
            let am = MersenneInt::<32, 5>::new(a);
            let bm = MersenneInt::<32, 5>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P4));
            assert_eq!((am - bm).residue(), a.subm(b, &P4));
            assert_eq!((am * bm).residue(), a.mulm(b, &P4));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P4).unwrap(), &P4));
            assert_eq!(am.neg().residue(), a.negm(&P4));
            assert_eq!(am.double().residue(), a.dblm(&P4));
            assert_eq!(am.square().residue(), a.sqm(&P4));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P4));

            // mod 2^56-5
            let am = MersenneInt::<56, 5>::new(a);
            let bm = MersenneInt::<56, 5>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P5));
            assert_eq!((am - bm).residue(), a.subm(b, &P5));
            assert_eq!((am * bm).residue(), a.mulm(b, &P5));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P5).unwrap(), &P5));
            assert_eq!(am.neg().residue(), a.negm(&P5));
            assert_eq!(am.double().residue(), a.dblm(&P5));
            assert_eq!(am.square().residue(), a.sqm(&P5));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P5));

            // mod 2^122-3
            let am = MersenneInt::<122, 3>::new(a);
            let bm = MersenneInt::<122, 3>::new(b);
            assert_eq!((am + bm).residue(), a.addm(b, &P6));
            assert_eq!((am - bm).residue(), a.subm(b, &P6));
            assert_eq!((am * bm).residue(), a.mulm(b, &P6));
            assert_eq!((am / bm).residue(), a.mulm(b.invm(&P6).unwrap(), &P6));
            assert_eq!(am.neg().residue(), a.negm(&P6));
            assert_eq!(am.double().residue(), a.dblm(&P6));
            assert_eq!(am.square().residue(), a.sqm(&P6));
            assert_eq!(am.pow(e as u128).residue(), a.powm(e as u128, &P6));
        }
    }
}