1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//! This crate provides efficient Modular arithmetic operations for various integer types,
//! including primitive integers and `num-bigint`. The latter option is enabled optionally.
//!
//! To achieve fast modular arithmetics, convert integers to any [ModularInteger] implementation
//! use static `new()` or associated [ModularInteger::convert()] functions. Some builtin implementations
//! of [ModularInteger] includes [MontgomeryInt] and [MersenneInt].
//!
//! Example code:
//! ```rust
//! use num_modular::{ModularCoreOps, ModularInteger, MontgomeryInt};
//!
//! // directly using methods in ModularCoreOps
//! let (x, y, m) = (12u8, 13u8, 5u8);
//! assert_eq!(x.mulm(y, &m), x * y % m);
//!
//! // convert integers into ModularInteger
//! let mx = MontgomeryInt::new(x, m);
//! let my = mx.convert(y); // faster than static MontgomeryInt::new(y, m)
//! assert_eq!((mx * my).residue(), x * y % m);
//! ```
//!

// XXX: consider implementing lookup table based modulo?
// REF: https://eprint.iacr.org/2014/040.pdf

#![no_std]
#[cfg(any(feature = "std", test))]
extern crate std;

use core::ops::{Add, Mul, Neg, Sub};

/// Core modular arithmetic operations.
///
/// Note that all functions will panic if the modulus is zero.
pub trait ModularCoreOps<Rhs = Self, Modulus = Self> {
    type Output;

    /// Return (self + rhs) % m
    fn addm(self, rhs: Rhs, m: Modulus) -> Self::Output;

    /// Return (self - rhs) % m
    fn subm(self, rhs: Rhs, m: Modulus) -> Self::Output;

    /// Return (self * rhs) % m
    fn mulm(self, rhs: Rhs, m: Modulus) -> Self::Output;
}

/// Core unary modular arithmetics
///
/// Note that all functions will panic if the modulus is zero.
pub trait ModularUnaryOps<Modulus = Self> {
    type Output;

    /// Return (-self) % m and make sure the result is normalized in range [0,m)
    fn negm(self, m: Modulus) -> Self::Output;

    /// Calculate modular inverse (x such that self*x = 1 mod m).
    ///
    /// This operation is only available for integer that is coprime to `m`. If not,
    /// the result will be [None].
    fn invm(self, m: Modulus) -> Option<Self::Output>;

    /// Calculate modular double ( x+x mod m)
    fn dblm(self, m: Modulus) -> Self::Output;

    /// Calculate modular square ( x*x mod m )
    fn sqm(self, m: Modulus) -> Self::Output;

    // TODO: Modular sqrt aka Quadratic residue, follow the behavior of FLINT `n_sqrtmod`
    // fn sqrtm(self, m: Modulus) -> Option<Self::Output>;
    // REF: https://stackoverflow.com/questions/6752374/cube-root-modulo-p-how-do-i-do-this
}

/// Modular power functions
pub trait ModularPow<Exp = Self, Modulus = Self> {
    type Output;

    /// Return (self ^ exp) % m
    fn powm(self, exp: Exp, m: Modulus) -> Self::Output;
}

/// Math symbols related to modular arithmetics
pub trait ModularSymbols<Modulus = Self> {
    /// Calculate Legendre Symbol (a|n), where a is self.
    ///
    /// Note that this function doesn't perform primality check, since
    /// is costly. So if n is not a prime, the result is not reasonable.
    ///
    /// # Panics
    /// if n is not prime
    #[inline]
    fn legendre(&self, n: Modulus) -> i8 {
        self.checked_legendre(n).expect("n shoud be a prime")
    }

    /// Checked version of [legendre()][ModularSymbols::legendre], return [None] if n is not prime
    fn checked_legendre(&self, n: Modulus) -> Option<i8>;

    /// Calculate Jacobi Symbol (a|n), where a is self
    ///
    /// # Panics
    /// if n is negative or even
    #[inline]
    fn jacobi(&self, n: Modulus) -> i8 {
        self.checked_jacobi(n)
            .expect("the Jacobi symbol is only defined for non-negative odd integers")
    }

    /// Checked version of [jacobi()][ModularSymbols::jacobi], return [None] if n is negative or even
    fn checked_jacobi(&self, n: Modulus) -> Option<i8>;

    /// Calculate Kronecker Symbol (a|n), where a is self
    fn kronecker(&self, n: Modulus) -> i8;
}

// TODO: Discrete log aka index, follow the behavior of FLINT `n_discrete_log_bsgs`
// fn logm(self, base: Modulus, m: Modulus);

/// Collection of common modular arithmetic operations
pub trait ModularOps<Rhs = Self, Modulus = Self, Output = Self>:
    ModularCoreOps<Rhs, Modulus, Output = Output>
    + ModularUnaryOps<Modulus, Output = Output>
    + ModularPow<Rhs, Modulus, Output = Output>
    + ModularSymbols<Modulus>
{
}
impl<T, Rhs, Modulus> ModularOps<Rhs, Modulus> for T where
    T: ModularCoreOps<Rhs, Modulus, Output = T>
        + ModularUnaryOps<Modulus, Output = T>
        + ModularPow<Rhs, Modulus, Output = T>
        + ModularSymbols<Modulus>
{
}

/// Collection of operations similar to [ModularOps], but takes operands with references
pub trait ModularRefOps: for<'r> ModularOps<&'r Self, &'r Self> + Sized {}
impl<T> ModularRefOps for T where T: for<'r> ModularOps<&'r T, &'r T> {}

/// Provides a utility function to convert signed integers into unsigned modular form
pub trait ModularAbs<Modulus> {
    /// Return |self| % m
    fn absm(self, m: &Modulus) -> Modulus;
}

/// Represents an number defined in a modulo ring ℤ/nℤ
///
/// The operators should panic if the modulus of two number
/// are not the same.
pub trait ModularInteger:
    Sized
    + PartialEq
    + Add<Self, Output = Self>
    + Sub<Self, Output = Self>
    + Neg<Output = Self>
    + Mul<Self, Output = Self>
{
    /// The underlying representation type of the integer
    type Base;

    /// Return the modulus of the ring
    fn modulus(&self) -> &Self::Base;

    /// Return the normalized residue of this integer in the ring
    fn residue(&self) -> Self::Base;

    /// Convert an normal integer into the same ring.
    ///
    /// This method should be perferred over the static
    /// constructor to prevent unnecessary overhead of pre-computation.
    fn convert(&self, n: Self::Base) -> Self;

    // Calculate the value of self + self
    fn double(self) -> Self;

    // Calculate the value of self * self
    fn square(self) -> Self;
}

// XXX: implement this trait for ff::PrimeField?

mod barret;
mod double;
mod mersenne;
mod monty;
mod prim;

pub use double::{udouble, umax};
pub use mersenne::MersenneInt;
pub use monty::{Montgomery, MontgomeryInt};

#[cfg(feature = "num-bigint")]
mod bigint;