1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
//! This crate provides efficient Modular arithmetic operations for various integer types,
//! including primitive integers and `num-bigint`. The latter option is enabled optionally.
//!
//! To achieve fast modular arithmetics, convert integers to any [ModularInteger] implementation
//! use static `new()` or associated [ModularInteger::new()]. [MontgomeryInt] is a builtin implementation
//! of [ModularInteger] based on the Montgomery form.
//!
//! Example code:
//! ```rust
//! use num_modular::{ModularCoreOps, ModularInteger, MontgomeryInt};
//!
//! // directly using methods in ModularCoreOps
//! let (x, y, m) = (12u8, 13u8, 5u8);
//! assert_eq!(x.mulm(y, &m), x * y % m);
//!
//! // convert integers into ModularInteger
//! let mx = MontgomeryInt::new(x, m);
//! let my = mx.new(y); // faster than static new()
//! assert_eq!((mx * my).residue(), x * y % m);
//! ```
//!
// XXX: consider implementing lookup table based modulo?
// REF: https://eprint.iacr.org/2014/040.pdf
#![no_std]
#[cfg(any(feature = "std", test))]
extern crate std;
use core::ops::{Add, Mul, Neg, Sub};
/// This trait describes core modular arithmetic operations
pub trait ModularCoreOps<Rhs = Self, Modulus = Self> {
type Output;
/// Return (self + rhs) % m
fn addm(self, rhs: Rhs, m: Modulus) -> Self::Output;
/// Return (self + rhs) % m
fn subm(self, rhs: Rhs, m: Modulus) -> Self::Output;
/// Return (self * rhs) % m
fn mulm(self, rhs: Rhs, m: Modulus) -> Self::Output;
/// Return (-self) % m and make sure the result is normalized in range [0,m)
fn negm(self, m: Modulus) -> Self::Output;
}
// TODO (v0.3): split negm, invm and sqrtm to ModularUnaryOps
// and split powm and logm to ModularPow
// TODO (v0.3): checked_jacobi, checked_kronecker, checked_legendre
/// This trait describes modular arithmetic operations
pub trait ModularOps<Rhs = Self, Modulus = Self>: ModularCoreOps<Rhs, Modulus> {
/// Return (self ^ exp) % m
fn powm(self, exp: Rhs, m: Modulus) -> Self::Output;
/// Calculate modular inverse (x such that self*x = 1 mod m).
///
/// This operation is only available for integer that is coprime to `m`. If not,
/// the result will be [None].
fn invm(self, m: Modulus) -> Option<Self::Output>
where
Self: Sized;
/// Calculate Jacobi Symbol (a|n), where a is self
///
/// # Panics
/// if n is negative or even
fn jacobi(self, n: Modulus) -> i8;
/// Calculate Kronecker Symbol (a|n), where a is self
fn kronecker(self, n: Modulus) -> i8;
/// Calculate Legendre Symbol (a|n), where a is self.
///
/// Note that this function doesn't perform primality check, since
/// is costly. So if n is not a prime, the result is not reasonable.
///
/// # Panics
/// if n is not prime
fn legendre(self, n: Modulus) -> i8;
// TODO: Modular sqrt aka Quadratic residue, follow the behavior of FLINT `n_sqrtmod`
// fn sqrtm(self, m: Modulus);
// TODO: Discrete log aka index, follow the behavior of FLINT `n_discrete_log_bsgs`
// fn logm(self, base: Modulus, m: Modulus);
}
/// Provides a utility function to convert signed integers into unsigned modular form
pub trait ModularAbs<Modulus> {
/// Return |self| % m
fn absm(self, m: &Modulus) -> Modulus;
}
/// Represents an number defined in a modulo ring ℤ/nℤ
///
/// The operators should panic if the modulus of two number
/// are not the same.
pub trait ModularInteger:
Sized
+ PartialEq
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Neg<Output = Self>
+ Mul<Self, Output = Self>
{
/// The underlying representation type of the integer
type Base;
/// Return the modulus of the ring
fn modulus(&self) -> &Self::Base;
/// Return the normalized residue of this integer in the ring
fn residue(&self) -> Self::Base;
/// Convert an normal integer into the same ring.
///
/// This method should be perferred over the static
/// constructor to prevent unnecessary overhead of pre-computation.
fn new(&self, n: Self::Base) -> Self;
}
mod barret;
mod double;
mod monty;
mod prim;
mod mersenne;
pub use double::{udouble, umax};
#[cfg(std)]
pub use monty::MontgomeryBigint;
pub use monty::{Montgomery, MontgomeryInt};
pub use mersenne::MersenneInt;
#[cfg(feature = "num-bigint")]
mod bigint;
// tests for ModularOps goes here
#[cfg(test)]
mod tests;